File size: 18,242 Bytes
5953ef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import torch
import torch.nn as nn
from rex.utils.iteration import windowed_queue_iter
from transformers import AutoModel, BertModel

from src.utils import decode_nnw_nsw_thw_mat, decode_nnw_thw_mat, decode_pointer_mat


class Biaffine(nn.Module):
    """Biaffine transformation

    References:
        - https://github.com/yzhangcs/parser/blob/main/supar/modules/affine.py
        - https://github.com/ljynlp/W2NER
    """

    def __init__(self, n_in, n_out=2, bias_x=True, bias_y=True):
        super().__init__()

        self.n_in = n_in
        self.n_out = n_out
        self.bias_x = bias_x
        self.bias_y = bias_y
        weight = torch.zeros(n_out, n_in + int(bias_x), n_in + int(bias_y))
        nn.init.xavier_normal_(weight)
        self.weight = nn.Parameter(weight, requires_grad=True)

    def extra_repr(self):
        s = f"n_in={self.n_in}, n_out={self.n_out}"
        if self.bias_x:
            s += f", bias_x={self.bias_x}"
        if self.bias_y:
            s += f", bias_y={self.bias_y}"

        return s

    def forward(self, x, y):
        if self.bias_x:
            x = torch.cat((x, torch.ones_like(x[..., :1])), -1)
        if self.bias_y:
            y = torch.cat((y, torch.ones_like(y[..., :1])), -1)
        # [batch_size, n_out, seq_len, seq_len]
        s = torch.einsum("bxi,oij,byj->boxy", x, self.weight, y)
        # s = s.permute(0, 2, 3, 1)

        return s


class LinearWithAct(nn.Module):
    def __init__(self, n_in, n_out, dropout=0) -> None:
        super().__init__()

        self.linear = nn.Linear(n_in, n_out)
        self.act_fn = nn.GELU()
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = self.linear(x)
        x = self.act_fn(x)
        x = self.dropout(x)
        return x


class PointerMatrix(nn.Module):
    """Pointer Matrix Prediction

    References:
        - https://github.com/ljynlp/W2NER
    """

    def __init__(
        self,
        hidden_size,
        biaffine_size,
        cls_num=2,
        dropout=0,
        biaffine_bias=False,
        use_rope=False,
    ):
        super().__init__()
        self.linear_h = LinearWithAct(
            n_in=hidden_size, n_out=biaffine_size, dropout=dropout
        )
        self.linear_t = LinearWithAct(
            n_in=hidden_size, n_out=biaffine_size, dropout=dropout
        )
        self.biaffine = Biaffine(
            n_in=biaffine_size,
            n_out=cls_num,
            bias_x=biaffine_bias,
            bias_y=biaffine_bias,
        )
        self.use_rope = use_rope

    def sinusoidal_position_embedding(self, qw, kw):
        batch_size, seq_len, output_dim = qw.shape
        position_ids = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(-1)

        indices = torch.arange(0, output_dim // 2, dtype=torch.float)
        indices = torch.pow(10000, -2 * indices / output_dim)
        pos_emb = position_ids * indices
        pos_emb = torch.stack([torch.sin(pos_emb), torch.cos(pos_emb)], dim=-1)
        pos_emb = pos_emb.repeat((batch_size, *([1] * len(pos_emb.shape))))
        pos_emb = torch.reshape(pos_emb, (batch_size, seq_len, output_dim))
        pos_emb = pos_emb.to(qw)

        # (bs, seq_len, 1, hz) -> (bs, seq_len, hz)
        cos_pos = pos_emb[..., 1::2].repeat_interleave(2, dim=-1)
        # (bs, seq_len, 1, hz) -> (bs, seq_len, hz)
        sin_pos = pos_emb[..., ::2].repeat_interleave(2, dim=-1)
        qw2 = torch.cat([-qw[..., 1::2], qw[..., ::2]], -1)
        qw = qw * cos_pos + qw2 * sin_pos
        kw2 = torch.cat([-kw[..., 1::2], kw[..., ::2]], -1)
        kw = kw * cos_pos + kw2 * sin_pos
        return qw, kw

    def forward(self, x):
        h = self.linear_h(x)
        t = self.linear_t(x)
        if self.use_rope:
            h, t = self.sinusoidal_position_embedding(h, t)
        o = self.biaffine(h, t)
        return o


def multilabel_categorical_crossentropy(y_pred, y_true, bit_mask=None):
    """
    https://kexue.fm/archives/7359
    https://github.com/gaohongkui/GlobalPointer_pytorch/blob/main/common/utils.py
    """
    y_pred = (1 - 2 * y_true) * y_pred  # -1 -> pos classes, 1 -> neg classes
    y_pred_neg = y_pred - y_true * 1e12  # mask the pred outputs of pos classes
    y_pred_pos = y_pred - (1 - y_true) * 1e12  # mask the pred outputs of neg classes
    zeros = torch.zeros_like(y_pred[..., :1])
    y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
    y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
    neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
    pos_loss = torch.logsumexp(y_pred_pos, dim=-1)

    if bit_mask is None:
        return neg_loss + pos_loss
    else:
        raise NotImplementedError


class MrcPointerMatrixModel(nn.Module):
    def __init__(
        self,
        plm_dir: str,
        cls_num: int = 2,
        biaffine_size: int = 384,
        none_type_id: int = 0,
        text_mask_id: int = 4,
        dropout: float = 0.3,
    ):
        super().__init__()

        # num of predicted classes, default is 3: None, NNW and THW
        self.cls_num = cls_num
        # None type id: 0, Next Neighboring Word (NNW): 1, Tail Head Word (THW): 2
        self.none_type_id = none_type_id
        # input: cls instruction sep text sep pad
        # mask:   1       2       3   4    5   0
        self.text_mask_id = text_mask_id

        self.plm = BertModel.from_pretrained(plm_dir)
        hidden_size = self.plm.config.hidden_size
        # self.biaffine_size = biaffine_size
        self.nnw_mat = PointerMatrix(
            hidden_size, biaffine_size, cls_num=2, dropout=dropout
        )
        self.thw_mat = PointerMatrix(
            hidden_size, biaffine_size, cls_num=2, dropout=dropout
        )
        self.criterion = nn.CrossEntropyLoss()

    def input_encoding(self, input_ids, mask):
        attention_mask = mask.gt(0).float()
        plm_outputs = self.plm(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict=True,
        )
        return plm_outputs.last_hidden_state

    def build_bit_mask(self, mask: torch.Tensor) -> torch.Tensor:
        # mask: (batch_size, seq_len)
        bs, seq_len = mask.shape
        mask_mat = (
            mask.eq(self.text_mask_id).unsqueeze(-1).expand((bs, seq_len, seq_len))
        )
        # bit_mask: (batch_size, seq_len, seq_len, 1)
        bit_mask = (
            torch.logical_and(mask_mat, mask_mat.transpose(1, 2)).unsqueeze(1).long()
        )
        return bit_mask

    def forward(self, input_ids, mask, labels=None, is_eval=False, **kwargs):
        hidden = self.input_encoding(input_ids, mask)
        nnw_hidden = self.nnw_mat(hidden)
        thw_hidden = self.thw_mat(hidden)
        # nnw_hidden = nnw_hidden / self.biaffine_size ** 0.5
        # thw_hidden = thw_hidden / self.biaffine_size ** 0.5
        # # (bs, 2, seq_len, seq_len)
        bs, _, seq_len, seq_len = nnw_hidden.shape

        bit_mask = self.build_bit_mask(mask)

        results = {"logits": {"nnw": nnw_hidden, "thw": thw_hidden}}
        if labels is not None:
            # mean
            nnw_loss = self.criterion(
                nnw_hidden.permute(0, 2, 3, 1).reshape(-1, 2),
                labels[:, 0, :, :].reshape(-1),
            )
            thw_loss = self.criterion(
                thw_hidden.permute(0, 2, 3, 1).reshape(-1, 2),
                labels[:, 1, :, :].reshape(-1),
            )
            loss = nnw_loss + thw_loss
            results["loss"] = loss

        if is_eval:
            batch_positions = self.decode(nnw_hidden, thw_hidden, bit_mask, **kwargs)
            results["pred"] = batch_positions
        return results

    def decode(
        self,
        nnw_hidden: torch.Tensor,
        thw_hidden: torch.Tensor,
        bit_mask: torch.Tensor,
        **kwargs,
    ):
        # B x L x L
        nnw_pred = nnw_hidden.argmax(1)
        thw_pred = thw_hidden.argmax(1)
        # B x 2 x L x L
        pred = torch.stack([nnw_pred, thw_pred], dim=1)
        pred = pred * bit_mask

        batch_preds = decode_nnw_thw_mat(pred, offsets=kwargs.get("offset"))

        return batch_preds


class MrcGlobalPointerModel(nn.Module):
    def __init__(
        self,
        plm_dir: str,
        use_rope: bool = True,
        cls_num: int = 2,
        biaffine_size: int = 384,
        none_type_id: int = 0,
        text_mask_id: int = 4,
        dropout: float = 0.3,
        mode: str = "w2",
    ):
        super().__init__()

        # num of predicted classes, default is 3: None, NNW and THW
        self.cls_num = cls_num
        # None type id: 0, Next Neighboring Word (NNW): 1, Tail Head Word (THW): 2
        self.none_type_id = none_type_id
        # input: cls instruction sep text sep pad
        # mask:   1       2       3   4    5   0
        self.text_mask_id = text_mask_id
        self.use_rope = use_rope

        # mode: w2: w2ner, cons: consecutive spans
        self.mode = mode
        assert self.mode in ["w2", "cons"]

        self.plm = BertModel.from_pretrained(plm_dir)
        self.hidden_size = self.plm.config.hidden_size
        self.biaffine_size = biaffine_size
        self.pointer = PointerMatrix(
            self.hidden_size,
            biaffine_size,
            cls_num=2 if self.mode == "w2" else 1,
            dropout=dropout,
            biaffine_bias=True,
            use_rope=use_rope,
        )

    def input_encoding(self, input_ids, mask):
        attention_mask = mask.gt(0).float()
        plm_outputs = self.plm(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict=True,
        )
        return plm_outputs.last_hidden_state

    def build_bit_mask(self, mask: torch.Tensor) -> torch.Tensor:
        # mask: (batch_size, seq_len)
        bs, seq_len = mask.shape
        mask_mat = (
            mask.eq(self.text_mask_id).unsqueeze(-1).expand((bs, seq_len, seq_len))
        )
        # bit_mask: (batch_size, 1, seq_len, seq_len)
        bit_mask = (
            torch.logical_and(mask_mat, mask_mat.transpose(1, 2)).unsqueeze(1).float()
        )
        if self.mode == "cons":
            bit_mask = bit_mask.triu()

        return bit_mask

    def forward(
        self, input_ids, mask, labels=None, is_eval=False, top_p=0.5, top_k=-1, **kwargs
    ):
        bit_mask = self.build_bit_mask(mask)
        hidden = self.input_encoding(input_ids, mask)
        # (bs, 2, seq_len, seq_len)
        logits = self.pointer(hidden)
        logits = logits * bit_mask - (1.0 - bit_mask) * 1e12
        logits = logits / (self.biaffine_size**0.5)
        # # (bs, 2, seq_len, seq_len)
        bs, cls_num, seq_len, seq_len = logits.shape
        assert labels.shape == (bs, cls_num, seq_len, seq_len)

        results = {"logits": logits}
        if labels is not None:
            loss = multilabel_categorical_crossentropy(
                logits.reshape(bs * cls_num, -1), labels.reshape(bs * cls_num, -1)
            )
            loss = loss.mean()
            results["loss"] = loss

        if is_eval:
            batch_positions = self.decode(logits, top_p=top_p, top_k=top_k, **kwargs)
            results["pred"] = batch_positions
        return results

    def calc_path_prob(self, probs, paths):
        """
        Args:
            probs: (2, seq_len, seq_len) | (1, seq_len, seq_len)
            paths: a list of paths in tuple

        Returns:
            [(path: tuple, prob: float), ...]
        """
        assert self.mode in ["w2", "cons"]
        paths_with_prob = []
        for path in paths:
            path_prob = 1.0
            if self.mode == "w2":
                for se in windowed_queue_iter(path, 2, 1, drop_last=True):
                    path_prob *= probs[0, se[0], se[-1]]
                path_prob *= probs[1, path[-1], path[0]]
            elif self.mode == "cons":
                path_prob = probs[0, path[0], path[-1]]
            paths_with_prob.append((path, path_prob))
        return paths_with_prob

    def decode(
        self,
        logits: torch.Tensor,
        top_p: float = 0.5,
        top_k: int = -1,
        **kwargs,
    ):
        # mode: w2: w2ner with nnw and thw labels, cons: consecutive spans with one type of labels
        assert self.mode in ["w2", "cons"]
        # B x 2 x L x L
        probs = logits.sigmoid()
        pred = (probs > top_p).long()
        if self.mode == "w2":
            preds = decode_nnw_thw_mat(pred, offsets=kwargs.get("offset"))
        elif self.mode == "cons":
            pred = pred.triu()
            preds = decode_pointer_mat(pred, offsets=kwargs.get("offset"))

        if top_k == -1:
            batch_preds = preds
        else:
            batch_preds = []
            for i, paths in enumerate(preds):
                paths_with_prob = self.calc_path_prob(probs[i], paths)
                paths_with_prob.sort(key=lambda pp: pp[1], reverse=True)
                batch_preds.append([pp[0] for pp in paths_with_prob[:top_k]])

        return batch_preds


class SchemaGuidedInstructBertModel(nn.Module):
    def __init__(
        self,
        plm_dir: str,
        vocab_size: int = None,
        use_rope: bool = True,
        biaffine_size: int = 512,
        label_mask_id: int = 4,
        text_mask_id: int = 7,
        dropout: float = 0.3,
    ):
        super().__init__()

        # input: [CLS] [I] Instruction [LM] PER [LM] LOC [LM] ORG [TL] Text [B] Background [SEP] [PAD]
        # mask:  1     2   3           4    5   4    5   4    5   6    7    8   9          10    0
        self.label_mask_id = label_mask_id
        self.text_mask_id = text_mask_id
        self.use_rope = use_rope

        self.plm = AutoModel.from_pretrained(plm_dir)
        if vocab_size:
            self.plm.resize_token_embeddings(vocab_size)
        self.hidden_size = self.plm.config.hidden_size
        self.biaffine_size = biaffine_size
        self.pointer = PointerMatrix(
            self.hidden_size,
            biaffine_size,
            cls_num=3,
            dropout=dropout,
            biaffine_bias=True,
            use_rope=use_rope,
        )

    def input_encoding(self, input_ids, mask):
        attention_mask = mask.gt(0).float()
        plm_outputs = self.plm(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict=True,
        )
        return plm_outputs.last_hidden_state

    def build_bit_mask(self, mask: torch.Tensor) -> torch.Tensor:
        # mask: (batch_size, seq_len)
        bs, seq_len = mask.shape
        # _m = torch.logical_or(mask.eq(self.label_mask_id), mask.eq(self.text_mask_id))
        # mask_mat = _m.unsqueeze(-1).expand((bs, seq_len, seq_len))
        # # bit_mask: (batch_size, 1, seq_len, seq_len)
        # bit_mask = (
        #     torch.logical_and(mask_mat, mask_mat.transpose(1, 2)).unsqueeze(1).float()
        # )
        bit_mask = (
            mask.gt(0).unsqueeze(1).unsqueeze(1).expand(bs, 1, seq_len, seq_len).float()
        )

        return bit_mask

    def forward(
        self, input_ids, mask, labels=None, is_eval=False, top_p=0.5, top_k=-1, **kwargs
    ):
        bit_mask = self.build_bit_mask(mask)
        hidden = self.input_encoding(input_ids, mask)
        # (bs, 3, seq_len, seq_len)
        logits = self.pointer(hidden)
        logits = logits * bit_mask - (1.0 - bit_mask) * 1e12
        logits = logits / (self.biaffine_size**0.5)
        # # (bs, 3, seq_len, seq_len)
        bs, cls_num, seq_len, seq_len = logits.shape
        assert labels.shape == (bs, cls_num, seq_len, seq_len)

        results = {"logits": logits}
        if labels is not None:
            loss = multilabel_categorical_crossentropy(
                logits.reshape(bs * cls_num, -1), labels.reshape(bs * cls_num, -1)
            )
            loss = loss.mean()
            results["loss"] = loss

        if is_eval:
            batch_positions = self.decode(logits, top_p=top_p, top_k=top_k, **kwargs)
            results["pred"] = batch_positions
        return results

    def calc_path_prob(self, probs, paths):
        """
        Args:
            probs: (2, seq_len, seq_len) | (1, seq_len, seq_len)
            paths: a list of paths in tuple

        Returns:
            [(path: tuple, prob: float), ...]
        """
        paths_with_prob = []
        for path in paths:
            path_prob = 1.0
            for se in windowed_queue_iter(path, 2, 1, drop_last=True):
                path_prob *= probs[0, se[0], se[-1]]
            path_prob *= probs[1, path[-1], path[0]]
            paths_with_prob.append((path, path_prob))
        return paths_with_prob

    def decode(
        self,
        logits: torch.Tensor,
        top_p: float = 0.5,
        top_k: int = -1,
        # legal_num_parts: tuple = (1, 2, 3),
        legal_num_parts: tuple = None,
        labels: torch.Tensor = None,
        **kwargs,
    ):
        # B x 3 x L x L
        if labels is None:
            # `labels` is used for upper bound analysis
            probs = logits.sigmoid()
            pred = (probs > top_p).long()
        else:
            pred = labels
        preds = decode_nnw_nsw_thw_mat(pred, offsets=kwargs.get("offset"))
        # for pred, gold in zip(preds, kwargs.get("spans")):
        #     sorted_pred = sorted(set(tuple(x) for x in pred))
        #     sorted_gold = sorted(set(tuple(x) for x in gold))
        #     if sorted_pred != sorted_gold:
        #         breakpoint()

        if top_k == -1:
            batch_preds = preds
        else:
            batch_preds = []
            for i, paths in enumerate(preds):
                paths_with_prob = self.calc_path_prob(probs[i], paths)
                paths_with_prob.sort(key=lambda pp: pp[1], reverse=True)
                batch_preds.append([pp[0] for pp in paths_with_prob[:top_k]])

        if legal_num_parts is not None:
            legal_preds = []
            for ins_paths in batch_preds:
                legal_paths = []
                for path in ins_paths:
                    if len(path) in legal_num_parts:
                        legal_paths.append(path)
                legal_preds.append(legal_paths)
        else:
            legal_preds = batch_preds

        return legal_preds