Spaces:
Sleeping
Sleeping
File size: 5,735 Bytes
7e978bb 1b2a38a 7e978bb 0189af7 7e978bb 8653d1f 0189af7 094584b 0189af7 8653d1f 7e978bb 46a37bc 4a6f262 7e978bb df2a65f 7e978bb fb78f43 7e978bb 4b0103d 7e978bb 1b2a38a c227359 e4e38b2 df2a65f e4e38b2 46a37bc e4e38b2 40c7d6d e4e38b2 7e978bb 1b2a38a 7e978bb 1b2a38a 7e978bb 1b2a38a 7e978bb 1b2a38a 7e978bb 1b2a38a 7e978bb 1b2a38a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gc
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os
# Load Hugging Face token
HF_TOKEN = os.getenv("HF_TOKEN")
login(token=HF_TOKEN)
# Define models
MODELS = {
"atlas-flash-1215": {
"name": "π¦ Atlas-Flash 1215",
"sizes": {
"1.5B": "Spestly/Atlas-Flash-1.5B-Preview",
},
"emoji": "π¦",
"experimental": True,
"is_vision": False,
"system_prompt_env": "ATLAS_FLASH_1215",
},
"atlas-pro-0403": {
"name": "π Atlas-Pro 0403",
"sizes": {
"1.5B": "Spestly/Atlas-Pro-1.5B-Preview",
},
"emoji": "π",
"experimental": True,
"is_vision": False,
"system_prompt_env": "ATLAS_PRO_0403",
},
}
# Clear memory
def clear_memory():
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Load model
def load_model(model_key, model_size):
try:
clear_memory()
# Unload previous model if any
global current_model
if current_model is not None:
del current_model["model"]
del current_model["tokenizer"]
clear_memory()
model_path = MODELS[model_key]["sizes"][model_size]
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
)
current_model.update({
"tokenizer": tokenizer,
"model": model,
"config": {
"name": f"{MODELS[model_key]['name']} {model_size}",
"path": model_path,
"system_prompt": os.getenv(MODELS[model_key]["system_prompt_env"], "Default system prompt"),
}
})
return f"β
{MODELS[model_key]['name']} {model_size} loaded successfully!"
except Exception as e:
return f"β Error: {str(e)}"
# Respond to input
def respond(prompt, max_tokens, temperature, top_p, top_k):
if not current_model["model"] or not current_model["tokenizer"]:
return "β οΈ Please select and load a model first"
try:
system_prompt = current_model["config"]["system_prompt"]
if not system_prompt:
return "β οΈ System prompt not found for the selected model."
full_prompt = f"{system_prompt}\n\n### Instruction:\n{prompt}\n\n### Response:"
inputs = current_model["tokenizer"](
full_prompt,
return_tensors="pt",
max_length=512,
truncation=True,
padding=True
)
with torch.no_grad():
output = current_model["model"].generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
do_sample=True,
pad_token_id=current_model["tokenizer"].pad_token_id,
eos_token_id=current_model["tokenizer"].eos_token_id,
)
response = current_model["tokenizer"].decode(output[0], skip_special_tokens=True)
if full_prompt in response:
response = response.replace(full_prompt, "").strip()
return response
except Exception as e:
return f"β οΈ Generation Error: {str(e)}"
finally:
clear_memory()
# Initialize model storage
current_model = {"tokenizer": None, "model": None, "config": None}
# UI for Gradio
def gradio_ui():
def load_and_set_model(model_key, model_size):
return load_model(model_key, model_size)
with gr.Blocks() as app:
gr.Markdown("## π¦ Atlas Inference Platform - Experimental π§ͺ")
with gr.Row():
model_key_dropdown = gr.Dropdown(
choices=list(MODELS.keys()),
value=list(MODELS.keys())[0],
label="Select Model Variant",
interactive=True
)
model_size_dropdown = gr.Dropdown(
choices=list(MODELS[list(MODELS.keys())[0]]["sizes"].keys()),
value="1.5B",
label="Select Model Size",
interactive=True
)
load_button = gr.Button("Load Model")
load_status = gr.Textbox(label="Model Load Status", interactive=False)
load_button.click(
load_and_set_model,
inputs=[model_key_dropdown, model_size_dropdown],
outputs=load_status,
)
with gr.Row():
prompt_input = gr.Textbox(label="Input Prompt", lines=4)
max_tokens_slider = gr.Slider(10, 512, value=256, step=10, label="Max Tokens")
temperature_slider = gr.Slider(0.1, 2.0, value=0.4, step=0.1, label="Temperature")
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="Top-P")
top_k_slider = gr.Slider(1, 100, value=50, step=1, label="Top-K")
generate_button = gr.Button("Generate Response")
response_output = gr.Textbox(label="Model Response", lines=6, interactive=False)
generate_button.click(
respond,
inputs=[prompt_input, max_tokens_slider, temperature_slider, top_p_slider, top_k_slider],
outputs=response_output,
)
return app
if __name__ == "__main__":
gradio_ui().launch()
|