Spaces:
Sleeping
Sleeping
Author
commited on
Commit
·
9a179e2
1
Parent(s):
90432c0
first commit
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from model import (DistilBertTokenizerFast, TARGET_IND2LABEL, DistilBERTClassifier,
|
4 |
+
load_model, load_tokenizer,
|
5 |
+
get_preds, get_verdict)
|
6 |
+
|
7 |
+
|
8 |
+
st.markdown("## Hello, my dear friend!")
|
9 |
+
st.markdown("### This service can classify article topic by it's title and abstract")
|
10 |
+
st.markdown("##### You can specify only title or only abstract, just leave the field empty, but it can work worse in that case.")
|
11 |
+
|
12 |
+
title = st.text_area("Title:")
|
13 |
+
abstract = st.text_area("Abstract:")
|
14 |
+
|
15 |
+
device = 'cpu'
|
16 |
+
tokenizer = load_tokenizer()
|
17 |
+
model = load_model(device)
|
18 |
+
|
19 |
+
text = title + abstract
|
20 |
+
if (not text):
|
21 |
+
verdict = "Both fields are empty"
|
22 |
+
else:
|
23 |
+
verdict = get_verdict(get_preds(text, model, tokenizer, device))
|
24 |
+
|
25 |
+
st.markdown("#### Verdict:")
|
26 |
+
st.markdown(verdict)
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0883bdb976c57c2ca825375fd530c836f5d231ff323fb7f23f6fc14189db57a
|
3 |
+
size 263204889
|
model.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import streamlit as st
|
5 |
+
from transformers import DistilBertModel, DistilBertTokenizerFast
|
6 |
+
|
7 |
+
|
8 |
+
TARGET_IND2LABEL = {
|
9 |
+
0: 'Computer Science',
|
10 |
+
1: 'Economics',
|
11 |
+
2: 'Electrical Engineering and Systems Science',
|
12 |
+
3: 'Mathematics',
|
13 |
+
4: 'Physics',
|
14 |
+
5: 'Quantitative Biology',
|
15 |
+
6: 'Quantitative Finance',
|
16 |
+
7: 'Statistics',
|
17 |
+
}
|
18 |
+
|
19 |
+
class DistilBERTClassifier(nn.Module):
|
20 |
+
def __init__(self, num_classes=8):
|
21 |
+
super().__init__()
|
22 |
+
self.encoder = DistilBertModel.from_pretrained("distilbert-base-cased")
|
23 |
+
self.pre_classifier = nn.Linear(768, 768)
|
24 |
+
self.gelu = nn.GELU()
|
25 |
+
self.dropout = nn.Dropout(0.1)
|
26 |
+
self.classifier = nn.Linear(768, num_classes)
|
27 |
+
|
28 |
+
def forward(self, input_ids, attention_mask, labels):
|
29 |
+
output = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
30 |
+
hidden_state = output[0]
|
31 |
+
pooler = hidden_state[:, 0]
|
32 |
+
pooler = self.dropout(self.gelu(self.pre_classifier(pooler)))
|
33 |
+
preds = self.classifier(pooler)
|
34 |
+
return preds
|
35 |
+
|
36 |
+
@st.cache_resource
|
37 |
+
def load_tokenizer():
|
38 |
+
return DistilBertTokenizerFast.from_pretrained('distilbert-base-cased')
|
39 |
+
|
40 |
+
@st.cache_resource
|
41 |
+
def load_model(device):
|
42 |
+
model = torch.load('model.pt', map_location=torch.device('cpu')).to(device)
|
43 |
+
model.eval()
|
44 |
+
return model
|
45 |
+
|
46 |
+
def get_verdict(preds):
|
47 |
+
inds = np.argsort(preds)[::-1]
|
48 |
+
sum_prob = 0.0
|
49 |
+
verdict = []
|
50 |
+
for ind in inds:
|
51 |
+
prob = preds[ind]
|
52 |
+
sum_prob += prob
|
53 |
+
verdict.append(f"{TARGET_IND2LABEL[ind]}: {prob}")
|
54 |
+
if (sum_prob >= 0.95):
|
55 |
+
break
|
56 |
+
return "\n\n".join(verdict)
|
57 |
+
|
58 |
+
def get_preds(text, model, tokenizer, device):
|
59 |
+
tokens = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
|
60 |
+
tokens['input_ids'] = tokens['input_ids'].to(device)
|
61 |
+
tokens['attention_mask'] = tokens['attention_mask'].to(device)
|
62 |
+
tokens['labels'] = None # made for training convinience
|
63 |
+
with torch.no_grad():
|
64 |
+
preds = torch.softmax(model(**tokens)[0], 0).cpu().numpy()
|
65 |
+
return preds
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
torch
|
3 |
+
transformers
|