import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("/arabic-text-stanceEvalV1") model = AutoModelForCausalLM.from_pretrained("/arabic-text-stanceEvalV1") def generate_text(prompt, max_length=50): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs['input_ids'], max_length=max_length, num_return_sequences=1) return tokenizer.decode(outputs[0], skip_special_tokens=True) st.title("SatnceEval LLM testing with Hugging Face and Streamlit") prompt = st.text_input("Enter your prompt:", "Once upon a time") if st.button("Generate"): with st.spinner("Generating..."): generated_text = generate_text(prompt) st.success("Generated Text:") st.write(generated_text)