Someshfengde's picture
Upload folder using huggingface_hub
2063d73 verified
raw
history blame
8.53 kB
import os
import gradio as gr
import torch
from FlagEmbedding.visual.modeling import Visualized_BGE
from torchvision import transforms
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
from pdf2image import convert_from_path
import numpy as np
import torch.nn.functional as F
import io
# Initialize the Visualized-BGE model
def load_bge_model(model_name: str, model_weight_path: str):
model = Visualized_BGE(model_name_bge=model_name, model_weight=model_weight_path)
model.eval()
return model
# Load the BGE model (ensure you have downloaded the weights and provide the correct path)
model_name = "BAAI/bge-base-en-v1.5" # or "BAAI/bge-m3" for multilingual
model_weight_path ="./Visualized_base_en_v1.5.pth"
model = load_bge_model(model_name, model_weight_path)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model.to(device)
# Function to encode images
import tempfile
import os
def encode_image(image_input):
"""
Encodes an image for retrieval.
Args:
image_input: Can be a file path (str), a NumPy array, or a PIL Image.
Returns:
torch.Tensor: The image embedding.
"""
delete_temp_file = False
if isinstance(image_input, str):
image_path = image_input
else:
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_file:
if isinstance(image_input, np.ndarray):
image = Image.fromarray(image_input)
elif isinstance(image_input, Image.Image):
image = image_input
else:
raise ValueError("Unsupported image input type for image encoding.")
image.save(tmp_file.name)
image_path = tmp_file.name
delete_temp_file = True # Mark that we need to delete this temp file
try:
with torch.no_grad():
embed = model.encode(image=image_path)
embed = embed.squeeze(0)
finally:
if delete_temp_file:
# Remove the temporary file
os.remove(image_path)
return embed.cpu()
# Function to encode text
def encode_text(text):
with torch.no_grad():
embed = model.encode(text=text) # Assuming encode returns [1, D]
embed = embed.squeeze(0) # Remove the batch dimension if present
return embed.cpu()
# Function to index uploaded files (PDFs or images)
def index_files(files, embeddings_state, metadata_state):
print("Indexing files...")
embeddings = []
metadata = []
for file in files:
if file.name.lower().endswith('.pdf'):
images = convert_from_path(file.name, thread_count=4)
for idx, img in enumerate(images):
img_path = f"{file.name}_page_{idx}.png"
img.save(img_path)
embed = encode_image(img_path)
print(f"Embedding shape after encoding image: {embed.shape}") # Should be [768]
embeddings.append(embed)
metadata.append({"type": "image", "path": img_path, "info": f"Page {idx}"})
elif file.name.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):
img_path = file.name
embed = encode_image(img_path)
print(f"Embedding shape after encoding image: {embed.shape}") # Should be [768]
embeddings.append(embed)
metadata.append({"type": "image", "path": img_path, "info": "Uploaded Image"})
else:
raise gr.Error("Unsupported file type. Please upload PDFs or image files.")
embeddings = torch.stack(embeddings).to(device) # Should result in shape [N, 768]
print(f"Stacked embeddings shape: {embeddings.shape}")
embeddings_state = embeddings
metadata_state = metadata
return f"Indexed {len(embeddings)} items.", embeddings_state, metadata_state
def search(query_text, query_image, k, embeddings_state, metadata_state):
embeddings = embeddings_state
metadata = metadata_state
if embeddings is None or embeddings.size(0) == 0:
return "No embeddings indexed. Please upload and index files first.", []
query_emb = None
if query_text and query_image:
gr.warning("Please provide either a text query or an image query, not both. Using text query by default.")
# text_emb = encode_text(query_text) # [D]
# image_emb = encode_image(query_image) # [D]
# query_emb = (text_emb + image_emb) / 2 # [D]
# print("Combined text and image embeddings for query.")
query_emb = encode_text(query_text) # [D]
if query_text:
query_emb = encode_text(query_text) # [D]
print("Encoded text query.")
elif query_image is not None :
print(query_image)
query_emb = encode_image(query_image) # [D]
print("Encoded image query.")
else:
return "Please provide at least a text query or an image query.", []
# Ensure query_emb has shape [1, D]
if query_emb.dim() == 1:
query_emb = query_emb.unsqueeze(0) # [1, D]
# Normalize embeddings for cosine similarity
query_emb = F.normalize(query_emb.to(device), p=2, dim=1) # [1, D]
indexed_emb = F.normalize(embeddings.to(device), p=2, dim=1) # [N, D]
print(f"Query embedding shape: {query_emb.shape}") # Should be [1, 768]
print(f"Indexed embeddings shape: {indexed_emb.shape}") # Should be [N, 768]
# Compute cosine similarities
similarities = torch.matmul(query_emb, indexed_emb.T).squeeze(0) # [N]
print(f"Similarities shape: {similarities.shape}")
# Get top-k results
topk = torch.topk(similarities, k)
topk_indices = topk.indices.cpu().numpy()
topk_scores = topk.values.cpu().numpy()
print(f"Top-{k} indices: {topk_indices}")
print(f"Top-{k} scores: {topk_scores}")
results = []
for idx, score in zip(topk_indices, topk_scores):
item = metadata[idx]
if item["type"] == "image":
# Load image from path
img = Image.open(item["path"]).convert("RGB")
results.append((img, f"Score: {score:.4f} | {item['info']}"))
else:
# Handle text data if applicable
results.append((item["data"], f"Score: {score:.4f} | {item['info']}"))
return results
# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Visualized-BGE: Multimodal Retrieval Demo πŸŽ‰")
gr.Markdown("""
Upload PDF or image files to index them. Then, perform searches using text, images, or both to retrieve the most relevant items.
**Note:** Ensure that you have indexed the files before performing a search.
""")
# Initialize state variables
embeddings_state = gr.State(None)
metadata_state = gr.State(None)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## 1️⃣ Upload and Index Files")
file_input = gr.File(file_types=["pdf", "png", "jpg", "jpeg", "bmp", "gif"], file_count="multiple", label="Upload Files")
index_button = gr.Button("πŸ”„ Index Files")
index_status = gr.Textbox("No files indexed yet.", label="Indexing Status")
with gr.Column(scale=3):
gr.Markdown("## 2️⃣ Perform Search")
with gr.Row():
query_text = gr.Textbox(placeholder="Enter your text query here...", label="Text Query")
query_image = gr.Image(label="Image Query (Optional)")
k = gr.Slider(minimum=1, maximum=20, step=1, label="Number of Results", value=5)
search_button = gr.Button("πŸ” Search")
output_gallery = gr.Gallery(label="Retrieved Results", show_label=True, columns=2)
# Define button actions
index_button.click(
index_files,
inputs=[file_input, embeddings_state, metadata_state],
outputs=[index_status, embeddings_state, metadata_state]
)
search_button.click(
search,
inputs=[query_text, query_image, k, embeddings_state, metadata_state],
outputs=output_gallery
)
gr.Markdown("""
---
## About
This demo uses the **Visualized-BGE** model for efficient multimodal retrieval tasks. Upload your documents or images, index them, and perform searches using text, images, or a combination of both.
**References:**
- [Visualized-BGE Paper](https://arxiv.org/abs/2406.04292)
- [FlagEmbedding GitHub](https://github.com/FlagOpen/FlagEmbedding)
""")
if __name__ == "__main__":
demo.launch(debug=True, share=True)