Spaces:
Runtime error
Runtime error
from typing import Optional | |
import gradio as gr | |
import numpy as np | |
import supervision as sv | |
import torch | |
from PIL import Image | |
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator | |
from utils.models import load_models, CHECKPOINT_NAMES | |
MARKDOWN = """ | |
# Segment Anything Model 2 🔥 | |
<div> | |
<a href="https://github.com/facebookresearch/segment-anything-2"> | |
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block;"> | |
</a> | |
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb"> | |
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;"> | |
</a> | |
<a href="https://blog.roboflow.com/what-is-segment-anything-2/"> | |
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;"> | |
</a> | |
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y"> | |
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;"> | |
</a> | |
</div> | |
Segment Anything Model 2 (SAM 2) is a foundation model designed to address promptable | |
visual segmentation in both images and videos. The model extends its functionality to | |
video by treating images as single-frame videos. Its design, a simple transformer | |
architecture with streaming memory, enables real-time video processing. A | |
model-in-the-loop data engine, which enhances the model and data through user | |
interaction, was built to collect the SA-V dataset, the largest video segmentation | |
dataset to date. SAM 2, trained on this extensive dataset, delivers robust performance | |
across diverse tasks and visual domains. | |
""" | |
EXAMPLES = [ | |
["tiny", "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 16], | |
["small", "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 16], | |
["large", "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 16], | |
["large", "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 64], | |
] | |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
MODELS = load_models(device=DEVICE) | |
def process(checkpoint_dropdown, image_input, points_per_side) -> Optional[Image.Image]: | |
model = MODELS[checkpoint_dropdown] | |
mask_generator = SAM2AutomaticMaskGenerator( | |
model=model, | |
points_per_side=points_per_side) | |
image = np.array(image_input.convert("RGB")) | |
sam_result = mask_generator.generate(image) | |
detections = sv.Detections.from_sam(sam_result=sam_result) | |
return MASK_ANNOTATOR.annotate(scene=image_input, detections=detections) | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
checkpoint_dropdown_component = gr.Dropdown( | |
choices=CHECKPOINT_NAMES, | |
value=CHECKPOINT_NAMES[0], | |
label="Checkpoint", info="Select a SAM2 checkpoint to use.", | |
interactive=True | |
) | |
points_per_side_component = gr.Slider( | |
minimum=16, | |
maximum=64, | |
value=16, | |
step=16, | |
label="Points per side", | |
info="the number of points to be sampled along one side of the image." | |
) | |
with gr.Row(): | |
with gr.Column(): | |
image_input_component = gr.Image(type='pil', label='Upload image') | |
submit_button_component = gr.Button(value='Submit', variant='primary') | |
with gr.Column(): | |
image_output_component = gr.Image(type='pil', label='Image Output') | |
with gr.Row(): | |
gr.Examples( | |
fn=process, | |
examples=EXAMPLES, | |
inputs=[ | |
checkpoint_dropdown_component, | |
image_input_component, | |
points_per_side_component | |
], | |
outputs=[image_output_component], | |
run_on_click=True | |
) | |
submit_button_component.click( | |
fn=process, | |
inputs=[ | |
checkpoint_dropdown_component, | |
image_input_component, | |
points_per_side_component | |
], | |
outputs=[image_output_component] | |
) | |
demo.launch(debug=False, show_error=True, max_threads=1) | |