Spaces:
Runtime error
Runtime error
Initial video processing
Browse files- app.py +171 -53
- requirements.txt +2 -1
- utils/efficient_sam.py +14 -0
- utils/video.py +27 -0
app.py
CHANGED
@@ -1,18 +1,21 @@
|
|
1 |
from typing import List
|
2 |
|
|
|
3 |
import cv2
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import supervision as sv
|
7 |
import torch
|
|
|
8 |
from inference.models import YOLOWorld
|
9 |
|
10 |
-
from utils.efficient_sam import load,
|
|
|
11 |
|
12 |
MARKDOWN = """
|
13 |
# YOLO-World + EfficientSAM 🔥
|
14 |
|
15 |
-
This is a demo of zero-shot instance segmentation using
|
16 |
[YOLO-World](https://github.com/AILab-CVC/YOLO-World) and
|
17 |
[EfficientSAM](https://github.com/yformer/EfficientSAM).
|
18 |
|
@@ -20,9 +23,15 @@ Powered by Roboflow [Inference](https://github.com/roboflow/inference) and
|
|
20 |
[Supervision](https://github.com/roboflow/supervision).
|
21 |
"""
|
22 |
|
23 |
-
|
|
|
|
|
24 |
['https://media.roboflow.com/dog.jpeg', 'dog, eye, nose, tongue, car', 0.005, 0.1, True, False, False],
|
25 |
]
|
|
|
|
|
|
|
|
|
26 |
|
27 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
EFFICIENT_SAM_MODEL = load(device=DEVICE)
|
@@ -33,10 +42,34 @@ MASK_ANNOTATOR = sv.MaskAnnotator()
|
|
33 |
LABEL_ANNOTATOR = sv.LabelAnnotator()
|
34 |
|
35 |
|
|
|
|
|
|
|
36 |
def process_categories(categories: str) -> List[str]:
|
37 |
return [category.strip() for category in categories.split(',')]
|
38 |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def process_image(
|
41 |
input_image: np.ndarray,
|
42 |
categories: str,
|
@@ -52,31 +85,69 @@ def process_image(
|
|
52 |
detections = sv.Detections.from_inference(results)
|
53 |
detections = detections.with_nms(
|
54 |
class_agnostic=with_class_agnostic_nms,
|
55 |
-
threshold=iou_threshold
|
|
|
56 |
if with_segmentation:
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
detections.mask = np.array(masks)
|
63 |
-
|
64 |
-
labels = [
|
65 |
-
(
|
66 |
-
f"{categories[class_id]}: {confidence:.2f}"
|
67 |
-
if with_confidence
|
68 |
-
else f"{categories[class_id]}"
|
69 |
)
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
confidence_threshold_component = gr.Slider(
|
@@ -140,32 +211,80 @@ with gr.Blocks() as demo:
|
|
140 |
with_segmentation_component.render()
|
141 |
with_confidence_component.render()
|
142 |
with_class_agnostic_nms_component.render()
|
143 |
-
with gr.
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
)
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
)
|
163 |
-
|
|
|
164 |
fn=process_image,
|
165 |
-
examples=EXAMPLES,
|
166 |
inputs=[
|
167 |
input_image_component,
|
168 |
-
|
169 |
confidence_threshold_component,
|
170 |
iou_threshold_component,
|
171 |
with_segmentation_component,
|
@@ -174,19 +293,18 @@ with gr.Blocks() as demo:
|
|
174 |
],
|
175 |
outputs=output_image_component
|
176 |
)
|
177 |
-
|
178 |
-
|
179 |
-
fn=process_image,
|
180 |
inputs=[
|
181 |
-
|
182 |
-
|
183 |
confidence_threshold_component,
|
184 |
iou_threshold_component,
|
185 |
with_segmentation_component,
|
186 |
with_confidence_component,
|
187 |
with_class_agnostic_nms_component
|
188 |
],
|
189 |
-
outputs=
|
190 |
)
|
191 |
|
192 |
demo.launch(debug=False, show_error=True)
|
|
|
1 |
from typing import List
|
2 |
|
3 |
+
import os
|
4 |
import cv2
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import supervision as sv
|
8 |
import torch
|
9 |
+
from tqdm import tqdm
|
10 |
from inference.models import YOLOWorld
|
11 |
|
12 |
+
from utils.efficient_sam import load, inference_with_boxes
|
13 |
+
from utils.video import generate_file_name, calculate_end_frame_index, create_directory
|
14 |
|
15 |
MARKDOWN = """
|
16 |
# YOLO-World + EfficientSAM 🔥
|
17 |
|
18 |
+
This is a demo of zero-shot object detection and instance segmentation using
|
19 |
[YOLO-World](https://github.com/AILab-CVC/YOLO-World) and
|
20 |
[EfficientSAM](https://github.com/yformer/EfficientSAM).
|
21 |
|
|
|
23 |
[Supervision](https://github.com/roboflow/supervision).
|
24 |
"""
|
25 |
|
26 |
+
RESULTS = "results"
|
27 |
+
|
28 |
+
IMAGE_EXAMPLES = [
|
29 |
['https://media.roboflow.com/dog.jpeg', 'dog, eye, nose, tongue, car', 0.005, 0.1, True, False, False],
|
30 |
]
|
31 |
+
VIDEO_EXAMPLES = [
|
32 |
+
['https://media.roboflow.com/supervision/video-examples/croissant-1280x720.mp4', 'croissant', 0.01, 0.2, False, False, False],
|
33 |
+
['https://media.roboflow.com/supervision/video-examples/suitcases-1280x720.mp4', 'suitcase', 0.1, 0.2, False, False, False],
|
34 |
+
]
|
35 |
|
36 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
EFFICIENT_SAM_MODEL = load(device=DEVICE)
|
|
|
42 |
LABEL_ANNOTATOR = sv.LabelAnnotator()
|
43 |
|
44 |
|
45 |
+
create_directory(directory_path=RESULTS)
|
46 |
+
|
47 |
+
|
48 |
def process_categories(categories: str) -> List[str]:
|
49 |
return [category.strip() for category in categories.split(',')]
|
50 |
|
51 |
|
52 |
+
def annotate_image(
|
53 |
+
input_image: np.ndarray,
|
54 |
+
detections: sv.Detections,
|
55 |
+
categories: List[str],
|
56 |
+
with_confidence: bool = False,
|
57 |
+
) -> np.ndarray:
|
58 |
+
labels = [
|
59 |
+
(
|
60 |
+
f"{categories[class_id]}: {confidence:.3f}"
|
61 |
+
if with_confidence
|
62 |
+
else f"{categories[class_id]}"
|
63 |
+
)
|
64 |
+
for class_id, confidence in
|
65 |
+
zip(detections.class_id, detections.confidence)
|
66 |
+
]
|
67 |
+
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
|
68 |
+
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
|
69 |
+
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
|
70 |
+
return output_image
|
71 |
+
|
72 |
+
|
73 |
def process_image(
|
74 |
input_image: np.ndarray,
|
75 |
categories: str,
|
|
|
85 |
detections = sv.Detections.from_inference(results)
|
86 |
detections = detections.with_nms(
|
87 |
class_agnostic=with_class_agnostic_nms,
|
88 |
+
threshold=iou_threshold
|
89 |
+
)
|
90 |
if with_segmentation:
|
91 |
+
detections.mask = inference_with_boxes(
|
92 |
+
image=input_image,
|
93 |
+
xyxy=detections.xyxy,
|
94 |
+
model=EFFICIENT_SAM_MODEL,
|
95 |
+
device=DEVICE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
)
|
97 |
+
output_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
|
98 |
+
output_image = annotate_image(
|
99 |
+
input_image=output_image,
|
100 |
+
detections=detections,
|
101 |
+
categories=categories,
|
102 |
+
with_confidence=with_confidence
|
103 |
+
)
|
104 |
+
return cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
|
105 |
+
|
106 |
+
|
107 |
+
def process_video(
|
108 |
+
input_video: str,
|
109 |
+
categories: str,
|
110 |
+
confidence_threshold: float = 0.3,
|
111 |
+
iou_threshold: float = 0.5,
|
112 |
+
with_segmentation: bool = True,
|
113 |
+
with_confidence: bool = False,
|
114 |
+
with_class_agnostic_nms: bool = False,
|
115 |
+
progress=gr.Progress(track_tqdm=True)
|
116 |
+
) -> str:
|
117 |
+
categories = process_categories(categories)
|
118 |
+
YOLO_WORLD_MODEL.set_classes(categories)
|
119 |
+
video_info = sv.VideoInfo.from_video_path(input_video)
|
120 |
+
total = calculate_end_frame_index(input_video)
|
121 |
+
frame_generator = sv.get_video_frames_generator(
|
122 |
+
source_path=input_video,
|
123 |
+
end=total
|
124 |
+
)
|
125 |
+
result_file_name = generate_file_name(extension="mp4")
|
126 |
+
result_file_path = os.path.join(RESULTS, result_file_name)
|
127 |
+
with sv.VideoSink(result_file_path, video_info=video_info) as sink:
|
128 |
+
for _ in tqdm(range(total), desc="Processing video..."):
|
129 |
+
frame = next(frame_generator)
|
130 |
+
results = YOLO_WORLD_MODEL.infer(frame, confidence=confidence_threshold)
|
131 |
+
detections = sv.Detections.from_inference(results)
|
132 |
+
detections = detections.with_nms(
|
133 |
+
class_agnostic=with_class_agnostic_nms,
|
134 |
+
threshold=iou_threshold
|
135 |
+
)
|
136 |
+
if with_segmentation:
|
137 |
+
detections.mask = inference_with_boxes(
|
138 |
+
image=frame,
|
139 |
+
xyxy=detections.xyxy,
|
140 |
+
model=EFFICIENT_SAM_MODEL,
|
141 |
+
device=DEVICE
|
142 |
+
)
|
143 |
+
frame = annotate_image(
|
144 |
+
input_image=frame,
|
145 |
+
detections=detections,
|
146 |
+
categories=categories,
|
147 |
+
with_confidence=with_confidence
|
148 |
+
)
|
149 |
+
sink.write_frame(frame)
|
150 |
+
return result_file_path
|
151 |
|
152 |
|
153 |
confidence_threshold_component = gr.Slider(
|
|
|
211 |
with_segmentation_component.render()
|
212 |
with_confidence_component.render()
|
213 |
with_class_agnostic_nms_component.render()
|
214 |
+
with gr.Tab(label="Image"):
|
215 |
+
with gr.Row():
|
216 |
+
input_image_component = gr.Image(
|
217 |
+
type='numpy',
|
218 |
+
label='Input Image'
|
219 |
+
)
|
220 |
+
output_image_component = gr.Image(
|
221 |
+
type='numpy',
|
222 |
+
label='Output Image'
|
223 |
+
)
|
224 |
+
with gr.Row():
|
225 |
+
image_categories_text_component = gr.Textbox(
|
226 |
+
label='Categories',
|
227 |
+
placeholder='comma separated list of categories',
|
228 |
+
scale=7
|
229 |
+
)
|
230 |
+
image_submit_button_component = gr.Button(
|
231 |
+
value='Submit',
|
232 |
+
scale=1,
|
233 |
+
variant='primary'
|
234 |
+
)
|
235 |
+
gr.Examples(
|
236 |
+
fn=process_image,
|
237 |
+
examples=IMAGE_EXAMPLES,
|
238 |
+
inputs=[
|
239 |
+
input_image_component,
|
240 |
+
image_categories_text_component,
|
241 |
+
confidence_threshold_component,
|
242 |
+
iou_threshold_component,
|
243 |
+
with_segmentation_component,
|
244 |
+
with_confidence_component,
|
245 |
+
with_class_agnostic_nms_component
|
246 |
+
],
|
247 |
+
outputs=output_image_component
|
248 |
)
|
249 |
+
with gr.Tab(label="Video"):
|
250 |
+
with gr.Row():
|
251 |
+
input_video_component = gr.Video(
|
252 |
+
label='Input Video'
|
253 |
+
)
|
254 |
+
output_video_component = gr.Video(
|
255 |
+
label='Output Video'
|
256 |
+
)
|
257 |
+
with gr.Row():
|
258 |
+
video_categories_text_component = gr.Textbox(
|
259 |
+
label='Categories',
|
260 |
+
placeholder='comma separated list of categories',
|
261 |
+
scale=7
|
262 |
+
)
|
263 |
+
video_submit_button_component = gr.Button(
|
264 |
+
value='Submit',
|
265 |
+
scale=1,
|
266 |
+
variant='primary'
|
267 |
+
)
|
268 |
+
gr.Examples(
|
269 |
+
fn=process_video,
|
270 |
+
examples=VIDEO_EXAMPLES,
|
271 |
+
inputs=[
|
272 |
+
input_video_component,
|
273 |
+
video_categories_text_component,
|
274 |
+
confidence_threshold_component,
|
275 |
+
iou_threshold_component,
|
276 |
+
with_segmentation_component,
|
277 |
+
with_confidence_component,
|
278 |
+
with_class_agnostic_nms_component
|
279 |
+
],
|
280 |
+
outputs=output_image_component
|
281 |
)
|
282 |
+
|
283 |
+
image_submit_button_component.click(
|
284 |
fn=process_image,
|
|
|
285 |
inputs=[
|
286 |
input_image_component,
|
287 |
+
image_categories_text_component,
|
288 |
confidence_threshold_component,
|
289 |
iou_threshold_component,
|
290 |
with_segmentation_component,
|
|
|
293 |
],
|
294 |
outputs=output_image_component
|
295 |
)
|
296 |
+
video_submit_button_component.click(
|
297 |
+
fn=process_video,
|
|
|
298 |
inputs=[
|
299 |
+
input_video_component,
|
300 |
+
video_categories_text_component,
|
301 |
confidence_threshold_component,
|
302 |
iou_threshold_component,
|
303 |
with_segmentation_component,
|
304 |
with_confidence_component,
|
305 |
with_class_agnostic_nms_component
|
306 |
],
|
307 |
+
outputs=output_video_component
|
308 |
)
|
309 |
|
310 |
demo.launch(debug=False, show_error=True)
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
inference-gpu[yolo-world]==0.9.13
|
2 |
supervision==0.19.0rc3
|
3 |
-
gradio==4.19.0
|
|
|
|
1 |
inference-gpu[yolo-world]==0.9.13
|
2 |
supervision==0.19.0rc3
|
3 |
+
gradio==4.19.0
|
4 |
+
tqdm==4.66.2
|
utils/efficient_sam.py
CHANGED
@@ -45,3 +45,17 @@ def inference_with_box(
|
|
45 |
max_predicted_iou = curr_predicted_iou
|
46 |
selected_mask_using_predicted_iou = all_masks[m]
|
47 |
return selected_mask_using_predicted_iou
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
max_predicted_iou = curr_predicted_iou
|
46 |
selected_mask_using_predicted_iou = all_masks[m]
|
47 |
return selected_mask_using_predicted_iou
|
48 |
+
|
49 |
+
|
50 |
+
def inference_with_boxes(
|
51 |
+
image: np.ndarray,
|
52 |
+
xyxy: np.ndarray,
|
53 |
+
model: torch.jit.ScriptModule,
|
54 |
+
device: torch.device
|
55 |
+
) -> np.ndarray:
|
56 |
+
masks = []
|
57 |
+
for [x_min, y_min, x_max, y_max] in xyxy:
|
58 |
+
box = np.array([[x_min, y_min], [x_max, y_max]])
|
59 |
+
mask = inference_with_box(image, box, model, device)
|
60 |
+
masks.append(mask)
|
61 |
+
return np.array(masks)
|
utils/video.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import datetime
|
3 |
+
import uuid
|
4 |
+
|
5 |
+
import supervision as sv
|
6 |
+
|
7 |
+
|
8 |
+
MAX_VIDEO_LENGTH_SEC = 3
|
9 |
+
|
10 |
+
|
11 |
+
def generate_file_name(extension="mp4"):
|
12 |
+
current_datetime = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
13 |
+
unique_id = uuid.uuid4()
|
14 |
+
return f"{current_datetime}_{unique_id}.{extension}"
|
15 |
+
|
16 |
+
|
17 |
+
def calculate_end_frame_index(source_video_path: str) -> int:
|
18 |
+
video_info = sv.VideoInfo.from_video_path(source_video_path)
|
19 |
+
return min(
|
20 |
+
video_info.total_frames,
|
21 |
+
video_info.fps * MAX_VIDEO_LENGTH_SEC
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def create_directory(directory_path: str) -> None:
|
26 |
+
if not os.path.exists(directory_path):
|
27 |
+
os.makedirs(directory_path)
|