import streamlit as st import pandas as pd import matplotlib.pyplot as plt import plotly.express as px df = pd.read_csv(r'FY2021_merged_file.csv', dtype={"Fiscal Week": "string", "Fiscal Year": "category", "Chain Code": "category", "Store": "category", "Address": "string", "Postal Code": "float", "City": "category", "State": "category", "Container Code": "category", "Sales Item Category": "category", "units sold":"float", "SalePrice":"float", "sales $":"float"}) df["Postal Code"] = df["Postal Code"].convert_dtypes() df["units sold"] = df["units sold"].convert_dtypes() # Extract fiscal year and week from the 'Fiscal Week' column for sorting df['Fiscal Year'] = df['Fiscal Week'].apply(lambda x: int(x.split(' ')[1])) # Extract year as an integer df['Week Number'] = df['Fiscal Week'].apply(lambda x: int(x.split('Week ')[1])) # Extract week as an integer # Sort the DataFrame by fiscal year and week number df = df.sort_values(by=['Fiscal Year', 'Week Number']) # Reformat 'Fiscal Week' for display (e.g., 'FY21W51') df['Fiscal Week Short'] = df.apply(lambda x: f"FY{x['Fiscal Year']%100}W{x['Week Number']}", axis=1) # Ensure the short fiscal week column is treated as a categorical variable and sorted by the order of appearance df['Fiscal Week Short'] = pd.Categorical(df['Fiscal Week Short'], categories=df['Fiscal Week Short'].unique(), ordered=True) # df['Fiscal Week'] = df['Fiscal Week'].apply(lambda x: x.replace('FY 20', 'FY').replace('Week ', 'W')) # Sort by 'Fiscal Week' # df = df.sort_values(by='Fiscal Week') st.title('Sales Data Dashboard') state = st.selectbox('Select State', df['State'].unique()) feature = st.selectbox('Select Feature for Grouping', ['Chain Code', 'Sales Item Category', 'Fiscal Week']) # Filter the dataframe based on selections filtered_df = df[df['State'] == state] # Plot based on user's selection if feature == 'Sales Item Category': st.subheader(f'Sales Data for {state} - Grouped by Sales Item Category') group_data = filtered_df.groupby(['Fiscal Week Short', 'Sales Item Category'])['units sold'].sum().reset_index() fig = px.bar(group_data, x='Fiscal Week Short', y='units sold', color='Sales Item Category', title=f'Units Sold over Fiscal Week in {state} by Sales Item Category', labels={'Units Sold': 'Units Sold'}) elif feature == 'Chain Code': st.subheader(f'Sales Data for {state} - Grouped by Chain Code') group_data = filtered_df.groupby(['Fiscal Week Short', 'Chain Code'])['units sold'].sum().reset_index() fig = px.bar(group_data, x='Fiscal Week Short', y='units sold', color='Chain Code', title=f'Units Sold over Fiscal Week in {state} by Chain Code', labels={'Units Sold': 'Units Sold'}) print(df.head(5)) # Display the interactive plot st.plotly_chart(fig)