import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = "cuda" if torch.cuda.is_available() else "cpu" def create_prompt_with_chat_format(messages, bos="", eos="", add_bos=True): formatted_text = "" for message in messages: if message["role"] == "system": formatted_text += "<|system|>\n" + message["content"] + "\n" elif message["role"] == "user": formatted_text += "<|user|>\n" + message["content"] + "\n" elif message["role"] == "assistant": formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n" else: raise ValueError( "Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format( message["role"] ) ) formatted_text += "<|assistant|>\n" formatted_text = bos + formatted_text if add_bos else formatted_text return formatted_text def inference(input_prompts, model, tokenizer): input_prompts = [ create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False) for input_prompt in input_prompts ] encodings = tokenizer(input_prompts, padding=True, return_tensors="pt") encodings = encodings.to(device) with torch.inference_mode(): outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250) output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True) input_prompts = [ tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts ] output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)] return output_texts model_name = "ai4bharat/Airavata" tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) input_prompts = [ "मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं।", "मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं और उनका वर्णन करें।", ] outputs = inference(input_prompts, model, tokenizer) print(outputs) # import gradio as gr # from transformers import AutoTokenizer, AutoModelForCausalLM # tokenizer = AutoTokenizer.from_pretrained("ai4bharat/Airavata") # model = AutoModelForCausalLM.from_pretrained("ai4bharat/Airavata") # def generate_response(prompt): # input_ids = tokenizer.encode(prompt, return_tensors="pt", max_length=50) # output_ids = model.generate(input_ids, max_length=100, num_beams=5, no_repeat_ngram_size=2) # response = tokenizer.decode(output_ids[0], skip_special_tokens=True) # return response # iface = gr.Interface( # fn=generate_response, # inputs="text", # outputs="text", # live=True, # title="Airavata LLMs Chatbot", # description="Ask me anything, and I'll generate a response!", # theme="light", # ) # iface.launch() # import gradio as gr # import torch # from transformers import AutoTokenizer, AutoModelForCausalLM # device = "cuda" if torch.cuda.is_available() else "cpu" # def create_prompt_with_chat_format(messages, bos="", eos="", add_bos=True): # formatted_text = "" # for message in messages: # if message["role"] == "system": # formatted_text += "\n" + message["content"] + "\n" # elif message["role"] == "user": # formatted_text += "\n" + message["content"] + "\n" # elif message["role"] == "assistant": # formatted_text += "\n" + message["content"].strip() + eos + "\n" # else: # raise ValueError( # "Tulu chat template only supports 'system', 'user', and 'assistant' roles. Invalid role: {}.".format( # message["role"] # ) # ) # formatted_text += "\n" # formatted_text = bos + formatted_text if add_bos else formatted_text # return formatted_text # def inference(input_prompts, model, tokenizer): # input_prompts = [ # create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False) # for input_prompt in input_prompts # ] # encodings = tokenizer(input_prompts, padding=True, return_tensors="pt") # encodings = encodings.to(device) # with torch.no_grad(): # outputs = model.generate(encodings.input_ids, do_sample=False, max_length=250) # output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True) # input_prompts = [ # tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts # ] # output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)] # return output_texts # model_name = "ai4bharat/Airavata" # tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") # tokenizer.pad_token = tokenizer.eos_token # model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) # examples = [ # ["मुझे अपने करियर के बारे में सुझाव दो", "मैं कैसे अध्ययन कर सकता हूँ?"], # ["कृपया मुझे एक कहानी सुनाएं", "ताजमहल के बारे में कुछ बताएं"], # ["मेरा नाम क्या है?", "आपका पसंदीदा फिल्म कौन सी है?"], # ] # iface = gr.Chat( # model_fn=lambda input_prompts: inference(input_prompts, model, tokenizer), # inputs=["text"], # outputs="text", # examples=examples, # title="Airavata Chatbot", # theme="light", # Optional: Set a light theme # ) # iface.launch()