File size: 10,547 Bytes
3cbcec8
cdf298d
d9aa2f6
3cbcec8
 
 
 
d9aa2f6
cdf298d
 
 
 
 
 
3cbcec8
cdf298d
3cbcec8
cdf298d
3cbcec8
cdf298d
 
3cbcec8
cdf298d
 
 
3cbcec8
cdf298d
 
 
 
 
 
 
 
 
 
 
 
3cbcec8
 
cdf298d
 
 
 
 
 
 
 
 
3cbcec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f149396
 
 
 
 
 
3cbcec8
 
 
 
 
f149396
 
3cbcec8
 
 
cdf298d
3cbcec8
cdf298d
 
70358ab
 
cdf298d
 
3cbcec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf298d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d58b13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import speech_recognition as sr
from gtts import gTTS
from pydub import AudioSegment
import io

device = "cuda" if torch.cuda.is_available() else "cpu"

def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
    formatted_text = ""
    for message in messages:
        if message["role"] == "system":
            formatted_text += "\n" + message["content"] + "\n"
        elif message["role"] == "user":
            formatted_text += "\n" + message["content"] + "\n"
        elif message["role"] == "assistant":
            formatted_text += "\n" + message["content"].strip() + eos + "\n"
        else:
            raise ValueError(
                "Tulu chat template only supports 'system', 'user', and 'assistant' roles. Invalid role: {}.".format(
                    message["role"]
                )
            )
    formatted_text += "\n"
    formatted_text = bos + formatted_text if add_bos else formatted_text
    return formatted_text

def inference(input_prompts, model, tokenizer):
    input_prompts = [
        create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
        for input_prompt in input_prompts
    ]

    encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
    encodings = encodings.to(device)

    with torch.no_grad():
        outputs = model.generate(encodings.input_ids, do_sample=False, max_length=250)

    output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)

    input_prompts = [
        tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
    ]
    output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
    return output_texts

def recognize_speech():
    recognizer = sr.Recognizer()
    microphone = sr.Microphone()

    with microphone as source:
        print("Listening...")
        recognizer.adjust_for_ambient_noise(source)
        audio_data = recognizer.listen(source, timeout=5)

    try:
        print("Recognizing...")
        text = recognizer.recognize_google(audio_data, language="hi-IN")
        return text
    except sr.UnknownValueError:
        print("Speech Recognition could not understand audio.")
        return ""
    except sr.RequestError as e:
        print(f"Could not request results from Google Speech Recognition service; {e}")
        return ""

def text_to_speech(text):
    tts = gTTS(text=text, lang="hi")
    audio_stream = io.BytesIO()
    tts.save(audio_stream)
    audio = AudioSegment.from_file(io.BytesIO(audio_stream.read()), format="mp3")
    return audio

def respond_to_input(input_text):
    output_texts = inference([input_text], model, tokenizer)
    output_text = output_texts[0]
    output_audio = text_to_speech(output_text)
    return output_text, output_audio.export(format="wav")

examples = [
    ["मुझे अपने करियर के बारे में सुझाव दो", "मैं कैसे अध्ययन कर सकता हूँ?"],
    ["कृपया मुझे एक कहानी सुनाएं", "ताजमहल के बारे में कुछ बताएं"],
    ["मेरा नाम क्या है?", "आपका पसंदीदा फिल्म कौन सी है?"],
]

iface = gr.Interface(
    fn=respond_to_input,
    inputs=["text", "microphone"],
    outputs=["text", "audio"],
    live=True,
    examples=examples,
    title="CAMAI",
    description="Type or speak to me, and I'll generate a response!",
    theme="light",
)

iface.launch()






###############################################################################################################################
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM
# import gradio as gr

# device = "cuda" if torch.cuda.is_available() else "cpu"


# def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
#     formatted_text = ""
#     for message in messages:
#         if message["role"] == "system":
#             formatted_text += "<|system|>\n" + message["content"] + "\n"
#         elif message["role"] == "user":
#             formatted_text += "<|user|>\n" + message["content"] + "\n"
#         elif message["role"] == "assistant":
#             formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n"
#         else:
#             raise ValueError(
#                 "Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format(
#                     message["role"]
#                 )
#             )
#     formatted_text += "<|assistant|>\n"
#     formatted_text = bos + formatted_text if add_bos else formatted_text
#     return formatted_text


# def inference(input_prompts, model, tokenizer):
#     input_prompts = [
#         create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
#         for input_prompt in input_prompts
#     ]

#     encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
#     encodings = encodings.to(device)

#     with torch.inference_mode():
#         outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250)

#     output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)

#     input_prompts = [
#         tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
#     ]
#     output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
#     return output_texts


# model_name = "ai4bharat/Airavata"

# tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
# tokenizer.pad_token = tokenizer.eos_token
# model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)

# def respond_to_text(input_text):
#     outputs = inference([input_text], model, tokenizer)
#     return outputs[0]


# input_prompts = [
#     "मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं।",
#     "मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं और उनका वर्णन करें।",
# ]
# iface = gr.Interface(fn=respond_to_text, inputs="text", outputs="text")
# iface.launch()
########################################################################################

# import gradio as gr
# from transformers import AutoTokenizer, AutoModelForCausalLM

# tokenizer = AutoTokenizer.from_pretrained("ai4bharat/Airavata")
# model = AutoModelForCausalLM.from_pretrained("ai4bharat/Airavata")

# def generate_response(prompt):
#     input_ids = tokenizer.encode(prompt, return_tensors="pt", max_length=50)
#     output_ids = model.generate(input_ids, max_length=100, num_beams=5, no_repeat_ngram_size=2)
#     response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
#     return response

# iface = gr.Interface(
#     fn=generate_response,
#     inputs="text",
#     outputs="text",
#     live=True,
#     title="Airavata LLMs Chatbot",
#     description="Ask me anything, and I'll generate a response!",
#     theme="light",
# )

# iface.launch()










# import gradio as gr
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM

# device = "cuda" if torch.cuda.is_available() else "cpu"

# def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
#     formatted_text = ""
#     for message in messages:
#         if message["role"] == "system":
#             formatted_text += "\n" + message["content"] + "\n"
#         elif message["role"] == "user":
#             formatted_text += "\n" + message["content"] + "\n"
#         elif message["role"] == "assistant":
#             formatted_text += "\n" + message["content"].strip() + eos + "\n"
#         else:
#             raise ValueError(
#                 "Tulu chat template only supports 'system', 'user', and 'assistant' roles. Invalid role: {}.".format(
#                     message["role"]
#                 )
#             )
#     formatted_text += "\n"
#     formatted_text = bos + formatted_text if add_bos else formatted_text
#     return formatted_text

# def inference(input_prompts, model, tokenizer):
#     input_prompts = [
#         create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
#         for input_prompt in input_prompts
#     ]

#     encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
#     encodings = encodings.to(device)

#     with torch.no_grad():
#         outputs = model.generate(encodings.input_ids, do_sample=False, max_length=250)

#     output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)

#     input_prompts = [
#         tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
#     ]
#     output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
#     return output_texts

# model_name = "ai4bharat/Airavata"
# tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
# tokenizer.pad_token = tokenizer.eos_token
# model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
# examples = [
#     ["मुझे अपने करियर के बारे में सुझाव दो", "मैं कैसे अध्ययन कर सकता हूँ?"],
#     ["कृपया मुझे एक कहानी सुनाएं", "ताजमहल के बारे में कुछ बताएं"],
#     ["मेरा नाम क्या है?", "आपका पसंदीदा फिल्म कौन सी है?"],
# ]

# iface = gr.Chat(
#     model_fn=lambda input_prompts: inference(input_prompts, model, tokenizer),
#     inputs=["text"],
#     outputs="text",
#     examples=examples,
#     title="Airavata Chatbot",
#     theme="light",  # Optional: Set a light theme
# )

# iface.launch()