import gradio as gr import torch import torch.nn.functional as F from facenet_pytorch import MTCNN, InceptionResnetV1 import os import numpy as np from PIL import Image import zipfile import cv2 from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from pytorch_grad_cam.utils.image import show_cam_on_image from transformers import pipeline with zipfile.ZipFile("examples.zip","r") as zip_ref: zip_ref.extractall(".") pipe = pipeline(model="SivaResearch/Fake_Detection",trust_remote_code=True) EXAMPLES_FOLDER = 'examples' examples_names = os.listdir(EXAMPLES_FOLDER) examples = [] for example_name in examples_names: example_path = os.path.join(EXAMPLES_FOLDER, example_name) label = example_name.split('_')[0] example = { 'path': example_path, 'label': label } examples.append(example) np.random.shuffle(examples) # shuffle def predict(input_image:Image.Image, true_label:str): out = pipe.predict(input_image) confidences,face_with_mask = out["confidences"], out["face_with_mask"] return confidences, true_label, face_with_mask interface = gr.Interface( fn=predict, inputs=[ gr.Image(label="Input Image", type="filepath"), "text" ], outputs=[ gr.Label(label="Class"), "text", gr.Image(label="Face with Explainability") ], examples=[[examples[i]["path"], examples[i]["label"]] for i in range(10)] ).launch()