import onnx import torch import argparse import numpy as np import torch.nn as nn from models.TMC import ETMC from models import image from onnx2pytorch import ConvertModel onnx_model = onnx.load('checkpoints\\efficientnet.onnx') pytorch_model = ConvertModel(onnx_model) # Define the audio_args dictionary audio_args = { 'nb_samp': 64600, 'first_conv': 1024, 'in_channels': 1, 'filts': [20, [20, 20], [20, 128], [128, 128]], 'blocks': [2, 4], 'nb_fc_node': 1024, 'gru_node': 1024, 'nb_gru_layer': 3, 'nb_classes': 2 } def get_args(parser): parser.add_argument("--batch_size", type=int, default=8) parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*") parser.add_argument("--LOAD_SIZE", type=int, default=256) parser.add_argument("--FINE_SIZE", type=int, default=224) parser.add_argument("--dropout", type=float, default=0.2) parser.add_argument("--gradient_accumulation_steps", type=int, default=1) parser.add_argument("--hidden", nargs="*", type=int, default=[]) parser.add_argument("--hidden_sz", type=int, default=768) parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"]) parser.add_argument("--img_hidden_sz", type=int, default=1024) parser.add_argument("--include_bn", type=int, default=True) parser.add_argument("--lr", type=float, default=1e-4) parser.add_argument("--lr_factor", type=float, default=0.3) parser.add_argument("--lr_patience", type=int, default=10) parser.add_argument("--max_epochs", type=int, default=500) parser.add_argument("--n_workers", type=int, default=12) parser.add_argument("--name", type=str, default="MMDF") parser.add_argument("--num_image_embeds", type=int, default=1) parser.add_argument("--patience", type=int, default=20) parser.add_argument("--savedir", type=str, default="./savepath/") parser.add_argument("--seed", type=int, default=1) parser.add_argument("--n_classes", type=int, default=2) parser.add_argument("--annealing_epoch", type=int, default=10) parser.add_argument("--device", type=str, default='cpu') parser.add_argument("--pretrained_image_encoder", type=bool, default = False) parser.add_argument("--freeze_image_encoder", type=bool, default = False) parser.add_argument("--pretrained_audio_encoder", type = bool, default=False) parser.add_argument("--freeze_audio_encoder", type = bool, default = False) parser.add_argument("--augment_dataset", type = bool, default = True) for key, value in audio_args.items(): parser.add_argument(f"--{key}", type=type(value), default=value) def load_spec_modality_model(args): spec_encoder = image.RawNet(args) ckpt = torch.load('checkpoints\RawNet2.pth', map_location = torch.device('cpu')) spec_encoder.load_state_dict(ckpt, strict = True) spec_encoder.eval() return spec_encoder #Load models. parser = argparse.ArgumentParser(description="Train Models") get_args(parser) args, remaining_args = parser.parse_known_args() assert remaining_args == [], remaining_args spec_model = load_spec_modality_model(args) print(f"Image model is: {pytorch_model}") print(f"Audio model is: {spec_model}") PATH = 'checkpoints\\model.pth' torch.save({ 'spec_encoder': spec_model.state_dict(), 'rgb_encoder': pytorch_model.state_dict() }, PATH) print("Model saved.")