SivaResearch's picture
demo
b6d5990
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
import numpy as np
from torch.utils import data
from collections import OrderedDict
from torch.nn.parameter import Parameter
class SincConv(nn.Module):
@staticmethod
def to_mel(hz):
return 2595 * np.log10(1 + hz / 700)
@staticmethod
def to_hz(mel):
return 700 * (10 ** (mel / 2595) - 1)
def __init__(self, device,out_channels, kernel_size,in_channels=1,sample_rate=16000,
stride=1, padding=0, dilation=1, bias=False, groups=1):
super(SincConv,self).__init__()
if in_channels != 1:
msg = "SincConv only support one input channel (here, in_channels = {%i})" % (in_channels)
raise ValueError(msg)
self.out_channels = out_channels
self.kernel_size = kernel_size
self.sample_rate=sample_rate
# Forcing the filters to be odd (i.e, perfectly symmetrics)
if kernel_size%2==0:
self.kernel_size=self.kernel_size+1
self.device=device
self.stride = stride
self.padding = padding
self.dilation = dilation
if bias:
raise ValueError('SincConv does not support bias.')
if groups > 1:
raise ValueError('SincConv does not support groups.')
# initialize filterbanks using Mel scale
NFFT = 512
f=int(self.sample_rate/2)*np.linspace(0,1,int(NFFT/2)+1)
fmel=self.to_mel(f) # Hz to mel conversion
fmelmax=np.max(fmel)
fmelmin=np.min(fmel)
filbandwidthsmel=np.linspace(fmelmin,fmelmax,self.out_channels+1)
filbandwidthsf=self.to_hz(filbandwidthsmel) # Mel to Hz conversion
self.mel=filbandwidthsf
self.hsupp=torch.arange(-(self.kernel_size-1)/2, (self.kernel_size-1)/2+1)
self.band_pass=torch.zeros(self.out_channels,self.kernel_size)
def forward(self,x):
for i in range(len(self.mel)-1):
fmin=self.mel[i]
fmax=self.mel[i+1]
hHigh=(2*fmax/self.sample_rate)*np.sinc(2*fmax*self.hsupp/self.sample_rate)
hLow=(2*fmin/self.sample_rate)*np.sinc(2*fmin*self.hsupp/self.sample_rate)
hideal=hHigh-hLow
self.band_pass[i,:]=Tensor(np.hamming(self.kernel_size))*Tensor(hideal)
band_pass_filter=self.band_pass.to(self.device)
self.filters = (band_pass_filter).view(self.out_channels, 1, self.kernel_size)
return F.conv1d(x, self.filters, stride=self.stride,
padding=self.padding, dilation=self.dilation,
bias=None, groups=1)
class Residual_block(nn.Module):
def __init__(self, nb_filts, first = False):
super(Residual_block, self).__init__()
self.first = first
if not self.first:
self.bn1 = nn.BatchNorm1d(num_features = nb_filts[0])
self.lrelu = nn.LeakyReLU(negative_slope=0.3)
self.conv1 = nn.Conv1d(in_channels = nb_filts[0],
out_channels = nb_filts[1],
kernel_size = 3,
padding = 1,
stride = 1)
self.bn2 = nn.BatchNorm1d(num_features = nb_filts[1])
self.conv2 = nn.Conv1d(in_channels = nb_filts[1],
out_channels = nb_filts[1],
padding = 1,
kernel_size = 3,
stride = 1)
if nb_filts[0] != nb_filts[1]:
self.downsample = True
self.conv_downsample = nn.Conv1d(in_channels = nb_filts[0],
out_channels = nb_filts[1],
padding = 0,
kernel_size = 1,
stride = 1)
else:
self.downsample = False
self.mp = nn.MaxPool1d(3)
def forward(self, x):
identity = x
if not self.first:
out = self.bn1(x)
out = self.lrelu(out)
else:
out = x
out = self.conv1(x)
out = self.bn2(out)
out = self.lrelu(out)
out = self.conv2(out)
if self.downsample:
identity = self.conv_downsample(identity)
out += identity
out = self.mp(out)
return out
class RawNet(nn.Module):
def __init__(self, d_args, device):
super(RawNet, self).__init__()
self.device=device
self.Sinc_conv=SincConv(device=self.device,
out_channels = d_args['filts'][0],
kernel_size = d_args['first_conv'],
in_channels = d_args['in_channels']
)
self.first_bn = nn.BatchNorm1d(num_features = d_args['filts'][0])
self.selu = nn.SELU(inplace=True)
self.block0 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][1], first = True))
self.block1 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][1]))
self.block2 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
d_args['filts'][2][0] = d_args['filts'][2][1]
self.block3 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
self.block4 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
self.block5 = nn.Sequential(Residual_block(nb_filts = d_args['filts'][2]))
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc_attention0 = self._make_attention_fc(in_features = d_args['filts'][1][-1],
l_out_features = d_args['filts'][1][-1])
self.fc_attention1 = self._make_attention_fc(in_features = d_args['filts'][1][-1],
l_out_features = d_args['filts'][1][-1])
self.fc_attention2 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
l_out_features = d_args['filts'][2][-1])
self.fc_attention3 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
l_out_features = d_args['filts'][2][-1])
self.fc_attention4 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
l_out_features = d_args['filts'][2][-1])
self.fc_attention5 = self._make_attention_fc(in_features = d_args['filts'][2][-1],
l_out_features = d_args['filts'][2][-1])
self.bn_before_gru = nn.BatchNorm1d(num_features = d_args['filts'][2][-1])
self.gru = nn.GRU(input_size = d_args['filts'][2][-1],
hidden_size = d_args['gru_node'],
num_layers = d_args['nb_gru_layer'],
batch_first = True)
self.fc1_gru = nn.Linear(in_features = d_args['gru_node'],
out_features = d_args['nb_fc_node'])
self.fc2_gru = nn.Linear(in_features = d_args['nb_fc_node'],
out_features = d_args['nb_classes'],bias=True)
self.sig = nn.Sigmoid()
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, x, y = None):
nb_samp = x.shape[0]
len_seq = x.shape[1]
x=x.view(nb_samp,1,len_seq)
x = self.Sinc_conv(x)
x = F.max_pool1d(torch.abs(x), 3)
x = self.first_bn(x)
x = self.selu(x)
x0 = self.block0(x)
y0 = self.avgpool(x0).view(x0.size(0), -1) # torch.Size([batch, filter])
y0 = self.fc_attention0(y0)
y0 = self.sig(y0).view(y0.size(0), y0.size(1), -1) # torch.Size([batch, filter, 1])
x = x0 * y0 + y0 # (batch, filter, time) x (batch, filter, 1)
x1 = self.block1(x)
y1 = self.avgpool(x1).view(x1.size(0), -1) # torch.Size([batch, filter])
y1 = self.fc_attention1(y1)
y1 = self.sig(y1).view(y1.size(0), y1.size(1), -1) # torch.Size([batch, filter, 1])
x = x1 * y1 + y1 # (batch, filter, time) x (batch, filter, 1)
x2 = self.block2(x)
y2 = self.avgpool(x2).view(x2.size(0), -1) # torch.Size([batch, filter])
y2 = self.fc_attention2(y2)
y2 = self.sig(y2).view(y2.size(0), y2.size(1), -1) # torch.Size([batch, filter, 1])
x = x2 * y2 + y2 # (batch, filter, time) x (batch, filter, 1)
x3 = self.block3(x)
y3 = self.avgpool(x3).view(x3.size(0), -1) # torch.Size([batch, filter])
y3 = self.fc_attention3(y3)
y3 = self.sig(y3).view(y3.size(0), y3.size(1), -1) # torch.Size([batch, filter, 1])
x = x3 * y3 + y3 # (batch, filter, time) x (batch, filter, 1)
x4 = self.block4(x)
y4 = self.avgpool(x4).view(x4.size(0), -1) # torch.Size([batch, filter])
y4 = self.fc_attention4(y4)
y4 = self.sig(y4).view(y4.size(0), y4.size(1), -1) # torch.Size([batch, filter, 1])
x = x4 * y4 + y4 # (batch, filter, time) x (batch, filter, 1)
x5 = self.block5(x)
y5 = self.avgpool(x5).view(x5.size(0), -1) # torch.Size([batch, filter])
y5 = self.fc_attention5(y5)
y5 = self.sig(y5).view(y5.size(0), y5.size(1), -1) # torch.Size([batch, filter, 1])
x = x5 * y5 + y5 # (batch, filter, time) x (batch, filter, 1)
x = self.bn_before_gru(x)
x = self.selu(x)
x = x.permute(0, 2, 1) #(batch, filt, time) >> (batch, time, filt)
self.gru.flatten_parameters()
x, _ = self.gru(x)
x = x[:,-1,:]
x = self.fc1_gru(x)
x = self.fc2_gru(x)
output=self.logsoftmax(x)
print(f"Spec output shape: {output.shape}")
return output
def _make_attention_fc(self, in_features, l_out_features):
l_fc = []
l_fc.append(nn.Linear(in_features = in_features,
out_features = l_out_features))
return nn.Sequential(*l_fc)
def _make_layer(self, nb_blocks, nb_filts, first = False):
layers = []
#def __init__(self, nb_filts, first = False):
for i in range(nb_blocks):
first = first if i == 0 else False
layers.append(Residual_block(nb_filts = nb_filts,
first = first))
if i == 0: nb_filts[0] = nb_filts[1]
return nn.Sequential(*layers)
def summary(self, input_size, batch_size=-1, device="cuda", print_fn = None):
if print_fn == None: printfn = print
model = self
def register_hook(module):
def hook(module, input, output):
class_name = str(module.__class__).split(".")[-1].split("'")[0]
module_idx = len(summary)
m_key = "%s-%i" % (class_name, module_idx + 1)
summary[m_key] = OrderedDict()
summary[m_key]["input_shape"] = list(input[0].size())
summary[m_key]["input_shape"][0] = batch_size
if isinstance(output, (list, tuple)):
summary[m_key]["output_shape"] = [
[-1] + list(o.size())[1:] for o in output
]
else:
summary[m_key]["output_shape"] = list(output.size())
if len(summary[m_key]["output_shape"]) != 0:
summary[m_key]["output_shape"][0] = batch_size
params = 0
if hasattr(module, "weight") and hasattr(module.weight, "size"):
params += torch.prod(torch.LongTensor(list(module.weight.size())))
summary[m_key]["trainable"] = module.weight.requires_grad
if hasattr(module, "bias") and hasattr(module.bias, "size"):
params += torch.prod(torch.LongTensor(list(module.bias.size())))
summary[m_key]["nb_params"] = params
if (
not isinstance(module, nn.Sequential)
and not isinstance(module, nn.ModuleList)
and not (module == model)
):
hooks.append(module.register_forward_hook(hook))
device = device.lower()
assert device in [
"cuda",
"cpu",
], "Input device is not valid, please specify 'cuda' or 'cpu'"
if device == "cuda" and torch.cuda.is_available():
dtype = torch.cuda.FloatTensor
else:
dtype = torch.FloatTensor
if isinstance(input_size, tuple):
input_size = [input_size]
x = [torch.rand(2, *in_size).type(dtype) for in_size in input_size]
summary = OrderedDict()
hooks = []
model.apply(register_hook)
model(*x)
for h in hooks:
h.remove()
print_fn("----------------------------------------------------------------")
line_new = "{:>20} {:>25} {:>15}".format("Layer (type)", "Output Shape", "Param #")
print_fn(line_new)
print_fn("================================================================")
total_params = 0
total_output = 0
trainable_params = 0
for layer in summary:
# input_shape, output_shape, trainable, nb_params
line_new = "{:>20} {:>25} {:>15}".format(
layer,
str(summary[layer]["output_shape"]),
"{0:,}".format(summary[layer]["nb_params"]),
)
total_params += summary[layer]["nb_params"]
total_output += np.prod(summary[layer]["output_shape"])
if "trainable" in summary[layer]:
if summary[layer]["trainable"] == True:
trainable_params += summary[layer]["nb_params"]
print_fn(line_new)