DavidCombei
commited on
Commit
•
2ea16ba
1
Parent(s):
c29cd4d
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
from transformers import AutoFeatureExtractor, WavLMModel
|
3 |
+
import torch
|
4 |
+
import soundfile as sf
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
|
9 |
+
class HuggingFaceFeatureExtractor:
|
10 |
+
def __init__(self, model_class, name):
|
11 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained(name)
|
13 |
+
self.model = model_class.from_pretrained(name)
|
14 |
+
self.model.eval()
|
15 |
+
self.model.to(self.device)
|
16 |
+
|
17 |
+
def __call__(self, audio, sr):
|
18 |
+
inputs = self.feature_extractor(
|
19 |
+
audio,
|
20 |
+
sampling_rate=sr,
|
21 |
+
return_tensors="pt",
|
22 |
+
padding=True,
|
23 |
+
)
|
24 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
25 |
+
with torch.no_grad():
|
26 |
+
outputs = self.model(**inputs)
|
27 |
+
return outputs.last_hidden_state
|
28 |
+
|
29 |
+
|
30 |
+
FEATURE_EXTRACTORS = {
|
31 |
+
"wavlm-base": lambda: HuggingFaceFeatureExtractor(WavLMModel, "microsoft/wavlm-base"),
|
32 |
+
"wavLM-V1": lambda: HuggingFaceFeatureExtractor(WavLMModel, "DavidCombei/wavLM-base-DeepFake_UTCN"),
|
33 |
+
"wavLM-V2": lambda: HuggingFaceFeatureExtractor(WavLMModel, "DavidCombei/wavLM-base-UTCN"),
|
34 |
+
"wavLM-V3": lambda: HuggingFaceFeatureExtractor(WavLMModel, "DavidCombei/wavLM-base-UTCN_114k"),
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
model1 = joblib.load('model1.joblib')
|
39 |
+
model2 = joblib.load('model2.joblib')
|
40 |
+
model3 = joblib.load('model3.joblib')
|
41 |
+
model4 = joblib.load('model4.joblib')
|
42 |
+
final_model = joblib.load('final_model.joblib')
|
43 |
+
|
44 |
+
|
45 |
+
def process_audio(file_audio):
|
46 |
+
audio, sr = sf.read(file_audio)
|
47 |
+
|
48 |
+
extractor_1 = FEATURE_EXTRACTORS['wavlm-base']()
|
49 |
+
extractor_2 = FEATURE_EXTRACTORS['wavLM-V1']()
|
50 |
+
extractor_3 = FEATURE_EXTRACTORS['wavLM-V2']()
|
51 |
+
extractor_4 = FEATURE_EXTRACTORS['wavLM-V3']()
|
52 |
+
|
53 |
+
eval1 = extractor_1(audio, sr)
|
54 |
+
eval1 = torch.mean(eval1, dim=1).cpu().numpy()
|
55 |
+
|
56 |
+
eval2 = extractor_2(audio, sr)
|
57 |
+
eval2 = torch.mean(eval2, dim=1).cpu().numpy()
|
58 |
+
|
59 |
+
eval3 = extractor_3(audio, sr)
|
60 |
+
eval3 = torch.mean(eval3, dim=1).cpu().numpy()
|
61 |
+
|
62 |
+
eval4 = extractor_4(audio, sr)
|
63 |
+
eval4 = torch.mean(eval4, dim=1).cpu().numpy()
|
64 |
+
|
65 |
+
eval1 = eval1.reshape(1, -1)
|
66 |
+
eval2 = eval2.reshape(1, -1)
|
67 |
+
eval3 = eval3.reshape(1, -1)
|
68 |
+
eval4 = eval4.reshape(1, -1)
|
69 |
+
|
70 |
+
eval_prob1 = model1.predict_proba(eval1)[:, 1].reshape(-1, 1)
|
71 |
+
eval_prob2 = model2.predict_proba(eval2)[:, 1].reshape(-1, 1)
|
72 |
+
eval_prob3 = model3.predict_proba(eval3)[:, 1].reshape(-1, 1)
|
73 |
+
eval_prob4 = model4.predict_proba(eval4)[:, 1].reshape(-1, 1)
|
74 |
+
|
75 |
+
eval_combined_probs = np.hstack((eval_prob1, eval_prob2, eval_prob3, eval_prob4))
|
76 |
+
|
77 |
+
final_prob = final_model.predict_proba(eval_combined_probs)[:, 1]
|
78 |
+
|
79 |
+
if final_prob < 0.5:
|
80 |
+
return f"Fake with a confidence of: {final_prob[0]:.4f}"
|
81 |
+
else:
|
82 |
+
return f"Real with a confidence of: {final_prob[0]:.4f}"
|
83 |
+
|
84 |
+
|
85 |
+
interface = gr.Interface(
|
86 |
+
fn=process_audio,
|
87 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
88 |
+
outputs="text",
|
89 |
+
title="Audio Deepfake Detection",
|
90 |
+
description="Upload an audio file to detect whether it is fake or real.",
|
91 |
+
)
|
92 |
+
|
93 |
+
interface.launch()
|