import gradio as gr from transformers import pipeline def load_question_generator(): question_generator = pipeline('text2text-generation', model='your-username/your-model-name') return question_generator def generate_questions(context, num_questions=3): try: generator = load_question_generator() questions = [] for _ in range(num_questions): result = generator(context, max_length=64, num_return_sequences=1) questions.append(result[0]['generated_text']) return "\n\n".join(questions) except Exception as e: return f"Error generating questions: {str(e)}" iface = gr.Interface( fn=generate_questions, inputs=[ gr.Textbox(lines=5, label="Enter your text context"), gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Number of questions") ], outputs=gr.Textbox(label="Generated Questions"), title="Question Generator", description="Generate questions from your text using AI", examples=[ ["The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core.", 2], ] ) iface.launch()