SinaRp commited on
Commit
adffe24
·
verified ·
1 Parent(s): 65df357

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -60
app.py CHANGED
@@ -1,64 +1,36 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
 
 
 
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ def load_question_generator():
5
+ question_generator = pipeline('text2text-generation',
6
+ model='your-username/your-model-name')
7
+ return question_generator
8
+
9
+ def generate_questions(context, num_questions=3):
10
+ try:
11
+ generator = load_question_generator()
12
+ questions = []
13
+
14
+ for _ in range(num_questions):
15
+ result = generator(context, max_length=64, num_return_sequences=1)
16
+ questions.append(result[0]['generated_text'])
17
+
18
+ return "\n\n".join(questions)
19
+ except Exception as e:
20
+ return f"Error generating questions: {str(e)}"
21
+
22
+ iface = gr.Interface(
23
+ fn=generate_questions,
24
+ inputs=[
25
+ gr.Textbox(lines=5, label="Enter your text context"),
26
+ gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Number of questions")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  ],
28
+ outputs=gr.Textbox(label="Generated Questions"),
29
+ title="Question Generator",
30
+ description="Generate questions from your text using AI",
31
+ examples=[
32
+ ["The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core.", 2],
33
+ ]
34
  )
35
 
36
+ iface.launch()