Siddartha10 commited on
Commit
426242f
·
verified ·
1 Parent(s): 22c39f1

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +116 -0
  2. policy_data.pdf +0 -0
app.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from openai import OpenAI
2
+ import streamlit as st
3
+ from dotenv import load_dotenv
4
+ import os
5
+ import shelve
6
+ from langchain_openai import OpenAIEmbeddings, ChatOpenAI
7
+ from langchain_core.prompts import PromptTemplate
8
+ from langchain.chains import RetrievalQA
9
+ from ragatouille import RAGPretrainedModel
10
+ from langchain.document_loaders import PyPDFLoader
11
+
12
+ RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
13
+
14
+ load_dotenv()
15
+ file_path = "policy_data.pdf"
16
+ loader = PyPDFLoader(file_path)
17
+ pages = loader.load()
18
+ full_document = ""
19
+ for page in pages:
20
+ full_document += page.page_content
21
+
22
+ index_dir = ".ragatouille/colbert/indexes/policy_data/"
23
+ ivf_path = os.path.join(index_dir, "ivf.pid.pt")
24
+ index_exists = os.path.exists(ivf_path)
25
+ if not index_exists:
26
+ st.write("Indexing document...")
27
+ loader = PyPDFLoader(file_path)
28
+ pages = loader.load()
29
+ full_document = "".join(page.page_content for page in pages)
30
+
31
+ RAG.index(
32
+ collection=[full_document],
33
+ index_name="policy_data",
34
+ max_document_length=512,
35
+ split_documents=True,
36
+ )
37
+ retriever = RAG.as_langchain_retriever(k=3)
38
+ st.write("Indexing complete!")
39
+ else:
40
+ st.write("Loading existing index...")
41
+ RAG = RAGPretrainedModel.from_index(".ragatouille/colbert/indexes/policy_data/")
42
+ retriever = RAG.as_langchain_retriever(k=3)
43
+
44
+ template = """Use the context below to answer the question.
45
+ Keep the answer concise and to the point.
46
+ If you are unsure about the answer, just say i do not know the answer to the question do not create your own answer and make sure the answer is concise and to the point.
47
+ Summarize the information such that main points are covered and if you think that there needs to be some more information added to the answer then you can add that information as well.
48
+ {context}
49
+
50
+ Question: {question}
51
+
52
+ Helpful Answer:"""
53
+ prompt = PromptTemplate.from_template(template)
54
+
55
+ chain_type_kwargs = {"prompt": prompt}
56
+
57
+
58
+ st.title("Streamlit Chatbot Interface")
59
+
60
+ USER_AVATAR = "👤"
61
+ BOT_AVATAR = "🤖"
62
+ llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.4, max_tokens=500)
63
+ chain = RetrievalQA.from_chain_type(
64
+ llm = llm,
65
+ chain_type="stuff",
66
+ retriever=retriever,
67
+ chain_type_kwargs=chain_type_kwargs,
68
+ )
69
+
70
+ # Ensure openai_model is initialized in session state
71
+ if "openai_model" not in st.session_state:
72
+ st.session_state["openai_model"] = "gpt-3.5-turbo"
73
+
74
+
75
+ # Load chat history from shelve file
76
+ def load_chat_history():
77
+ with shelve.open("chat_history") as db:
78
+ return db.get("messages", [])
79
+
80
+
81
+ # Save chat history to shelve file
82
+ def save_chat_history(messages):
83
+ with shelve.open("chat_history") as db:
84
+ db["messages"] = messages
85
+
86
+
87
+ # Initialize or load chat history
88
+ if "messages" not in st.session_state:
89
+ st.session_state.messages = load_chat_history()
90
+
91
+ # Sidebar with a button to delete chat history
92
+ with st.sidebar:
93
+ if st.button("Delete Chat History"):
94
+ st.session_state.messages = []
95
+ save_chat_history([])
96
+
97
+ # Display chat messages
98
+ for message in st.session_state.messages:
99
+ avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
100
+ with st.chat_message(message["role"], avatar=avatar):
101
+ st.markdown(message["content"])
102
+
103
+ # Main chat interface
104
+ if prompt := st.chat_input("How can I help?"):
105
+ st.session_state.messages.append({"role": "user", "content": prompt})
106
+ with st.chat_message("user", avatar=USER_AVATAR):
107
+ st.markdown(prompt)
108
+
109
+ with st.chat_message("assistant", avatar=BOT_AVATAR):
110
+ message_placeholder = st.empty()
111
+ full_response = ""
112
+ response = chain.invoke(prompt)
113
+ full_response = response['result']
114
+ message_placeholder.markdown(full_response)
115
+ st.session_state.messages.append({"role": "assistant", "content": full_response})
116
+ save_chat_history(st.session_state.messages)
policy_data.pdf ADDED
Binary file (850 kB). View file