Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -31,6 +31,7 @@ from composable_diffusion.model_creation import model_and_diffusion_defaults as
|
|
31 |
|
32 |
has_cuda = th.cuda.is_available()
|
33 |
device = th.device('cpu' if not has_cuda else 'cuda')
|
|
|
34 |
|
35 |
# Create base model.
|
36 |
timestep_respacing = 100 #@param{type: 'number'}
|
@@ -63,12 +64,11 @@ def show_images(batch: th.Tensor):
|
|
63 |
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
64 |
display(Image.fromarray(reshaped.numpy()))
|
65 |
|
66 |
-
def compose_language_descriptions(prompt):
|
67 |
#@markdown `prompt`: when composing multiple sentences, using `|` as the delimiter.
|
68 |
prompts = [x.strip() for x in prompt.split('|')]
|
69 |
|
70 |
batch_size = 1
|
71 |
-
guidance_scale = 10 #@param{type: 'number'}
|
72 |
# Tune this parameter to control the sharpness of 256x256 images.
|
73 |
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
74 |
upsample_temp = 0.980 #@param{type: 'number'}
|
@@ -229,13 +229,12 @@ clevr_model.to(device)
|
|
229 |
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
230 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
231 |
|
232 |
-
def compose_clevr_objects(prompt):
|
233 |
print(prompt)
|
234 |
coordinates = [[float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
|
235 |
for x in prompt.split('|')]
|
236 |
coordinates += [[-1, -1]] # add unconditional score label
|
237 |
batch_size = 1
|
238 |
-
guidance_scale = 10
|
239 |
|
240 |
def model_fn(x_t, ts, **kwargs):
|
241 |
half = x_t[:1]
|
@@ -274,22 +273,22 @@ def compose_clevr_objects(prompt):
|
|
274 |
return out_img
|
275 |
|
276 |
|
277 |
-
def compose(prompt, ver):
|
278 |
if ver == 'GLIDE':
|
279 |
-
return compose_language_descriptions(prompt)
|
280 |
else:
|
281 |
-
return compose_clevr_objects(prompt)
|
282 |
|
283 |
examples_1 = 'a camel | a forest'
|
284 |
examples_2 = 'A cloudy blue sky | A mountain in the horizon | Cherry Blossoms in front of the mountain'
|
285 |
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
|
286 |
-
examples = [[examples_1, 'GLIDE'], [examples_2, 'GLIDE'], [examples_3, 'CLEVR Objects']]
|
287 |
|
288 |
import gradio as gr
|
289 |
|
290 |
title = 'Compositional Visual Generation with Composable Diffusion Models'
|
291 |
description = '<p>Demo for Composable Diffusion (~20s per example)</p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing multiple sentences, use `|` as the delimiter, see given examples below.</p>'
|
292 |
|
293 |
-
iface = gr.Interface(compose, [
|
294 |
|
295 |
iface.launch()
|
|
|
31 |
|
32 |
has_cuda = th.cuda.is_available()
|
33 |
device = th.device('cpu' if not has_cuda else 'cuda')
|
34 |
+
print(device)
|
35 |
|
36 |
# Create base model.
|
37 |
timestep_respacing = 100 #@param{type: 'number'}
|
|
|
64 |
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
65 |
display(Image.fromarray(reshaped.numpy()))
|
66 |
|
67 |
+
def compose_language_descriptions(prompt, guidance_scale):
|
68 |
#@markdown `prompt`: when composing multiple sentences, using `|` as the delimiter.
|
69 |
prompts = [x.strip() for x in prompt.split('|')]
|
70 |
|
71 |
batch_size = 1
|
|
|
72 |
# Tune this parameter to control the sharpness of 256x256 images.
|
73 |
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
74 |
upsample_temp = 0.980 #@param{type: 'number'}
|
|
|
229 |
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
230 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
231 |
|
232 |
+
def compose_clevr_objects(prompt, guidance_scale):
|
233 |
print(prompt)
|
234 |
coordinates = [[float(x.split(',')[0].strip()), float(x.split(',')[1].strip())]
|
235 |
for x in prompt.split('|')]
|
236 |
coordinates += [[-1, -1]] # add unconditional score label
|
237 |
batch_size = 1
|
|
|
238 |
|
239 |
def model_fn(x_t, ts, **kwargs):
|
240 |
half = x_t[:1]
|
|
|
273 |
return out_img
|
274 |
|
275 |
|
276 |
+
def compose(prompt, ver, guidance_scale):
|
277 |
if ver == 'GLIDE':
|
278 |
+
return compose_language_descriptions(prompt, guidance_scale)
|
279 |
else:
|
280 |
+
return compose_clevr_objects(prompt, guidance_scale)
|
281 |
|
282 |
examples_1 = 'a camel | a forest'
|
283 |
examples_2 = 'A cloudy blue sky | A mountain in the horizon | Cherry Blossoms in front of the mountain'
|
284 |
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
|
285 |
+
examples = [[examples_1, 'GLIDE', 10], [examples_2, 'GLIDE', 10], [examples_3, 'CLEVR Objects', 10]]
|
286 |
|
287 |
import gradio as gr
|
288 |
|
289 |
title = 'Compositional Visual Generation with Composable Diffusion Models'
|
290 |
description = '<p>Demo for Composable Diffusion (~20s per example)</p><p>See more information from our <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/">Project Page</a>.</p><ul><li>One version is based on the released <a href="https://github.com/openai/glide-text2im">GLIDE</a> for composing natural language description.</li><li>Another is based on our pre-trained CLEVR Object Model for composing objects. <br>(<b>Note</b>: We recommend using <b><i>x</i></b> in range <b><i>[0.1, 0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in given ranges.)</li></ul><p>When composing multiple sentences, use `|` as the delimiter, see given examples below.</p>'
|
291 |
|
292 |
+
iface = gr.Interface(compose, inputs=["text", gr.inputs.Radio(['GLIDE','CLEVR Objects'], type="value", default='GLIDE', label='version'), gr.Slider(1, 10)], outputs='image', title=title, description=description, examples=examples)
|
293 |
|
294 |
iface.launch()
|