from predict import run_prediction from io import StringIO import json import spacy from spacy import displacy from transformers import pipeline import torch import nltk nltk.download('punkt') ##Summarization summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") def summarize_text(text): resp = summarizer(text) stext = resp[0]['summary_text'] return stext ##Company Extraction ner=pipeline('ner',model='Jean-Baptiste/camembert-ner-with-dates',tokenizer='Jean-Baptiste/camembert-ner-with-dates', aggregation_strategy="simple") def fin_ner(text): replaced_spans = ner(text) new_spans=[] for item in replaced_spans: item['entity']=item['entity_group'] del item['entity_group'] new_spans.append(item) return {"text": text, "entities": new_spans} #CUAD STARTS def load_questions(): questions = [] with open('questions.txt') as f: questions = f.readlines() return questions def load_questions_short(): questions_short = [] with open('questionshort.txt') as f: questions_short = f.readlines() return questions_short def quad(query,file): with open(file) as f: paragraph = f.read() questions = load_questions() questions_short = load_questions_short() if (not len(paragraph)==0) and not (len(query)==0): print('getting predictions') predictions = run_prediction([query], paragraph, 'marshmellow77/roberta-base-cuad',n_best_size=5) answer = "" answer_p="" if predictions['0'] == "": answer = 'No answer found in document' else: with open("nbest.json") as jf: data = json.load(jf) for i in range(1): raw_answer=data['0'][i]['text'] answer += f"{data['0'][i]['text']}\n" answer_p =answer+ f"Probability: {round(data['0'][i]['probability']*100,1)}%\n\n" return answer,answer_p