File size: 1,802 Bytes
3f3ca03 f7ea213 3f3ca03 626e7c3 192a8bd 626e7c3 6e7a9e7 f7ea213 6e7a9e7 f7ea213 d518ecd a826f4e ebbff3c a826f4e f7ea213 a826f4e f7ea213 626e7c3 3f3ca03 06d0b3f 626e7c3 3f3ca03 a826f4e f7ea213 6e7a9e7 750c66b f4d786c 6e7a9e7 a826f4e 6e7a9e7 a826f4e 6e7a9e7 a826f4e 6e7a9e7 4cc3a06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import gradio as gr
import torch
from score_fincat import score_fincat
from sus_fls import get_sustainability,fls
from Cuad_others import quad,summarize_text,fin_ner
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_questions():
questions = []
with open('questionshort.txt') as f:
questions = f.readlines()
return questions
questions = load_questions()
answer_main=''
def mainFun(query,file):
text=''
with open(file.name) as f:
text = f.read()
answer_main,answer_p=quad(query,file)
return text,answer_p,summarize_text(answer_main)
def mainFun2(temp):
return fin_ner(temp.split('Probability:')[0])
def mainFun3(temp):
return score_fincat(temp.split('Probability:')[0])
def mainFun4(temp):
return get_sustainability(temp.split('Probability:')[0])
def mainFun5(temp):
return fls(temp.split('Probability:')[0])
demo = gr.Blocks()
with demo:
txt_file = gr.File(label='CONTRACT')
text = gr.Textbox(lines=10)
selected_ques=gr.Dropdown(choices=questions,label='SEARCH QUERY')
b1 = gr.Button("Analyze File")
answer = gr.Textbox(lines=2)
summarize = gr.Textbox(lines=2)
b1.click(mainFun, inputs=[selected_ques,txt_file], outputs=[text,answer,summarize])
b2=gr.Button("Get NER")
label_ner = gr.HighlightedText()
b2.click(mainFun2,inputs=answer,outputs=label_ner)
b3=gr.Button("Get CLAIM")
label_claim = gr.HighlightedText()
b3.click(mainFun3,inputs=answer,outputs=label_claim)
b4=gr.Button("Get SUSTAINABILITY")
label_sus = gr.Label()
b4.click(mainFun4,inputs=answer,outputs=label_sus)
b5=gr.Button("Get FLS")
label_fls = gr.Label()
b5.click(mainFun5,inputs=answer,outputs=label_fls)
demo.launch() |