Upload predict.py
Browse files- predict.py +126 -0
predict.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import time
|
3 |
+
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
|
4 |
+
from multiprocessing import cpu_count
|
5 |
+
|
6 |
+
from transformers import (
|
7 |
+
AutoConfig,
|
8 |
+
AutoModelForQuestionAnswering,
|
9 |
+
AutoTokenizer,
|
10 |
+
squad_convert_examples_to_features
|
11 |
+
)
|
12 |
+
|
13 |
+
from transformers.data.processors.squad import SquadResult, SquadV2Processor, SquadExample
|
14 |
+
from transformers.data.metrics.squad_metrics import compute_predictions_logits
|
15 |
+
|
16 |
+
|
17 |
+
def run_prediction(question_texts, context_text, model_path, n_best_size=1):
|
18 |
+
max_seq_length = 512
|
19 |
+
doc_stride = 256
|
20 |
+
n_best_size = n_best_size
|
21 |
+
max_query_length = 64
|
22 |
+
max_answer_length = 512
|
23 |
+
do_lower_case = False
|
24 |
+
null_score_diff_threshold = 0.0
|
25 |
+
|
26 |
+
def to_list(tensor):
|
27 |
+
return tensor.detach().cpu().tolist()
|
28 |
+
|
29 |
+
config_class, model_class, tokenizer_class = (AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer)
|
30 |
+
config = config_class.from_pretrained(model_path)
|
31 |
+
tokenizer = tokenizer_class.from_pretrained(model_path, do_lower_case=True, use_fast=False)
|
32 |
+
model = model_class.from_pretrained(model_path, config=config)
|
33 |
+
|
34 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
+
model.to(device)
|
36 |
+
|
37 |
+
processor = SquadV2Processor()
|
38 |
+
examples = []
|
39 |
+
|
40 |
+
timer = time.time()
|
41 |
+
for i, question_text in enumerate(question_texts):
|
42 |
+
|
43 |
+
example = SquadExample(
|
44 |
+
qas_id=str(i),
|
45 |
+
question_text=question_text,
|
46 |
+
context_text=context_text,
|
47 |
+
answer_text=None,
|
48 |
+
start_position_character=None,
|
49 |
+
title="Predict",
|
50 |
+
answers=None,
|
51 |
+
)
|
52 |
+
|
53 |
+
examples.append(example)
|
54 |
+
print(f'Created Squad Examples in {time.time()-timer} seconds')
|
55 |
+
|
56 |
+
print(f'Number of CPUs: {cpu_count()}')
|
57 |
+
timer = time.time()
|
58 |
+
features, dataset = squad_convert_examples_to_features(
|
59 |
+
examples=examples,
|
60 |
+
tokenizer=tokenizer,
|
61 |
+
max_seq_length=max_seq_length,
|
62 |
+
doc_stride=doc_stride,
|
63 |
+
max_query_length=max_query_length,
|
64 |
+
is_training=False,
|
65 |
+
return_dataset="pt",
|
66 |
+
threads=cpu_count(),
|
67 |
+
)
|
68 |
+
print(f'Converted Examples to Features in {time.time()-timer} seconds')
|
69 |
+
|
70 |
+
eval_sampler = SequentialSampler(dataset)
|
71 |
+
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=10)
|
72 |
+
|
73 |
+
all_results = []
|
74 |
+
|
75 |
+
timer = time.time()
|
76 |
+
for batch in eval_dataloader:
|
77 |
+
model.eval()
|
78 |
+
batch = tuple(t.to(device) for t in batch)
|
79 |
+
|
80 |
+
with torch.no_grad():
|
81 |
+
inputs = {
|
82 |
+
"input_ids": batch[0],
|
83 |
+
"attention_mask": batch[1],
|
84 |
+
"token_type_ids": batch[2],
|
85 |
+
}
|
86 |
+
|
87 |
+
example_indices = batch[3]
|
88 |
+
|
89 |
+
outputs = model(**inputs)
|
90 |
+
|
91 |
+
for i, example_index in enumerate(example_indices):
|
92 |
+
eval_feature = features[example_index.item()]
|
93 |
+
unique_id = int(eval_feature.unique_id)
|
94 |
+
|
95 |
+
output = [to_list(output[i]) for output in outputs.to_tuple()]
|
96 |
+
|
97 |
+
start_logits, end_logits = output
|
98 |
+
result = SquadResult(unique_id, start_logits, end_logits)
|
99 |
+
all_results.append(result)
|
100 |
+
print(f'Model predictions completed in {time.time()-timer} seconds')
|
101 |
+
|
102 |
+
print(all_results)
|
103 |
+
|
104 |
+
output_nbest_file = None
|
105 |
+
if n_best_size > 1:
|
106 |
+
output_nbest_file = "nbest.json"
|
107 |
+
|
108 |
+
timer = time.time()
|
109 |
+
final_predictions = compute_predictions_logits(
|
110 |
+
all_examples=examples,
|
111 |
+
all_features=features,
|
112 |
+
all_results=all_results,
|
113 |
+
n_best_size=n_best_size,
|
114 |
+
max_answer_length=max_answer_length,
|
115 |
+
do_lower_case=do_lower_case,
|
116 |
+
output_prediction_file=None,
|
117 |
+
output_nbest_file=output_nbest_file,
|
118 |
+
output_null_log_odds_file=None,
|
119 |
+
verbose_logging=False,
|
120 |
+
version_2_with_negative=True,
|
121 |
+
null_score_diff_threshold=null_score_diff_threshold,
|
122 |
+
tokenizer=tokenizer
|
123 |
+
)
|
124 |
+
print(f'Logits converted to predictions in {time.time()-timer} seconds')
|
125 |
+
|
126 |
+
return final_predictions
|