from predict import run_prediction from io import StringIO import json import gradio as gr import spacy from spacy import displacy from transformers import AutoTokenizer, AutoModelForTokenClassification,RobertaTokenizer,pipeline import torch import nltk from nltk.tokenize import sent_tokenize from fin_readability_sustainability import BERTClass, do_predict import pandas as pd import en_core_web_sm from fincat_utils import extract_context_words from fincat_utils import bert_embedding_extract import pickle lr_clf = pickle.load(open("lr_clf_FiNCAT.pickle",'rb')) nlp = en_core_web_sm.load() nltk.download('punkt') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #SUSTAINABILITY STARTS tokenizer_sus = RobertaTokenizer.from_pretrained('roberta-base') model_sustain = BERTClass(2, "sustanability") model_sustain.to(device) model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict']) def get_sustainability(text): df = pd.DataFrame({'sentence':sent_tokenize(text)}) actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df) highlight = [] for sent, prob in zip(df['sentence'].values, actual_predictions_sustainability[1]): if prob>=4.384316: highlight.append((sent, 'non-sustainable')) elif prob<=1.423736: highlight.append((sent, 'sustainable')) else: highlight.append((sent, '-')) return highlight #SUSTAINABILITY ENDS #CLAIM STARTS def score_fincat(txt): li = [] highlight = [] txt = " " + txt + " " k = '' for word in txt.split(): if any(char.isdigit() for char in word): if word[-1] in ['.', ',', ';', ":", "-", "!", "?", ")", '"', "'"]: k = word[-1] word = word[:-1] st = txt.find(" " + word + k + " ")+1 k = '' ed = st + len(word) x = {'paragraph' : txt, 'offset_start':st, 'offset_end':ed} context_text = extract_context_words(x) features = bert_embedding_extract(context_text, word) if(features[0]=='None'): highlight.append(('None', ' ')) dff = pd.DataFrame([['None', 'None', 'None']) headers = ['numeral', 'prediction', 'probability'] dff.columns = headers return highlight, dff prediction = lr_clf.predict(features.reshape(1, 768)) prediction_probability = '{:.4f}'.format(round(lr_clf.predict_proba(features.reshape(1, 768))[:,1][0], 4)) highlight.append((word, ' In-claim' if prediction==1 else 'Out-of-Claim')) li.append([word,' In-claim' if prediction==1 else 'Out-of-Claim', prediction_probability]) else: highlight.append((word, ' ')) headers = ['numeral', 'prediction', 'probability'] dff = pd.DataFrame(li) dff.columns = headers return highlight, dff ##Summarization summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") def summarize_text(text): resp = summarizer(text) stext = resp[0]['summary_text'] return stext def split_in_sentences(text): doc = nlp(text) return [str(sent).strip() for sent in doc.sents] def make_spans(text,results): results_list = [] for i in range(len(results)): results_list.append(results[i]['label']) facts_spans = [] facts_spans = list(zip(split_in_sentences(text),results_list)) return facts_spans ##Forward Looking Statement fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls") def fls(text): results = fls_model(split_in_sentences(text)) return make_spans(text,results) ##Company Extraction ner=pipeline('ner',model='Jean-Baptiste/camembert-ner-with-dates',tokenizer='Jean-Baptiste/camembert-ner-with-dates', aggregation_strategy="simple") def fin_ner(text): replaced_spans = ner(text) return replaced_spans #CUAD STARTS def load_questions(): questions = [] with open('questions.txt') as f: questions = f.readlines() return questions def load_questions_short(): questions_short = [] with open('questionshort.txt') as f: questions_short = f.readlines() return questions_short def quad(query,file): with open(file.name) as f: paragraph = f.read() questions = load_questions() questions_short = load_questions_short() if (not len(paragraph)==0) and not (len(query)==0): print('getting predictions') predictions = run_prediction([query], paragraph, 'marshmellow77/roberta-base-cuad',n_best_size=5) answer = "" if predictions['0'] == "": answer = 'No answer found in document' else: with open("nbest.json") as jf: data = json.load(jf) for i in range(1): raw_answer=data['0'][i]['text'] answer += f"Answer {i+1}: {data['0'][i]['text']} -- \n" answer += f"Probability: {round(data['0'][i]['probability']*100,1)}%\n\n" #summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") #resp = summarizer(answer) #stext = resp[0]['summary_text'] # highlight,dff=score_fincat(answer) return answer,summarize_text(answer),score_fincat(answer),get_sustainability(answer),fls(answer) # b6 = gr.Button("Get Sustainability") #b6.click(get_sustainability, inputs = text, outputs = gr.HighlightedText()) #iface = gr.Interface(fn=get_sustainability, inputs="textbox", title="CONBERT",description="SUSTAINABILITY TOOL", outputs=gr.HighlightedText(), allow_flagging="never") #iface.launch() iface = gr.Interface(fn=quad, inputs=[gr.inputs.Textbox(label='SEARCH QUERY'),gr.inputs.File(label='TXT FILE')], title="CONBERT",description="SUSTAINABILITY TOOL",article='Article', outputs=[gr.outputs.Textbox(label='Answer'),gr.outputs.Textbox(label='Summary'),gr.HighlightedText(label='Claims'),gr.HighlightedText(label='SUSTAINABILITY'),gr.HighlightedText(label='FLS')], allow_flagging="never") iface.launch()