|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification,RobertaTokenizer |
|
import torch |
|
from fin_readability_sustainability import BERTClass, do_predict |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
tokenizer_sus = RobertaTokenizer.from_pretrained('roberta-base') |
|
model_sustain = BERTClass(2, "sustanability") |
|
model_sustain.to(device) |
|
model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict']) |
|
|
|
|
|
from nltk.tokenize import sent_tokenize |
|
def get_sustainability(text): |
|
df = pd.DataFrame({'sentence':sent_tokenize(text)}) |
|
actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df) |
|
highlight = [] |
|
for sent, prob in zip(df['sentence'].values, actual_predictions_sustainability[1]): |
|
if prob>=4.384316: |
|
highlight.append((sent, 'non-sustainable')) |
|
elif prob<=1.423736: |
|
highlight.append((sent, 'sustainable')) |
|
else: |
|
highlight.append((sent, '-')) |
|
return highlight |
|
|
|
|
|
|
|
b6 = gr.Button("Get Sustainability") |
|
b6.click(get_sustainability, inputs = text, outputs = gr.HighlightedText()) |
|
|
|
|
|
iface = gr.Interface(fn=get_sustainability, inputs=gr.inputs.Textbox(lines=5, placeholder="Enter Financial Text here..."), title="CONBERT",description="SUSTAINABILITY TOOL", outputs=gr.HighlightedText(), allow_flagging="never") |
|
iface.launch() |