|
from predict import run_prediction |
|
from io import StringIO |
|
import json |
|
import gradio as gr |
|
import spacy |
|
from spacy import displacy |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification,RobertaTokenizer,pipeline |
|
import torch |
|
import nltk |
|
from nltk.tokenize import sent_tokenize |
|
from fin_readability_sustainability import BERTClass, do_predict |
|
import pandas as pd |
|
import en_core_web_sm |
|
from fincat_utils import extract_context_words |
|
from fincat_utils import bert_embedding_extract |
|
import pickle |
|
lr_clf = pickle.load(open("lr_clf_FiNCAT.pickle",'rb')) |
|
|
|
nlp = en_core_web_sm.load() |
|
nltk.download('punkt') |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
tokenizer_sus = RobertaTokenizer.from_pretrained('roberta-base') |
|
model_sustain = BERTClass(2, "sustanability") |
|
model_sustain.to(device) |
|
model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict']) |
|
|
|
def get_sustainability(text): |
|
df = pd.DataFrame({'sentence':sent_tokenize(text)}) |
|
actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df) |
|
highlight = [] |
|
for sent, prob in zip(df['sentence'].values, actual_predictions_sustainability[1]): |
|
if prob>=4.384316: |
|
highlight.append((sent, 'non-sustainable')) |
|
elif prob<=1.423736: |
|
highlight.append((sent, 'sustainable')) |
|
else: |
|
highlight.append((sent, '-')) |
|
return highlight |
|
|
|
|
|
|
|
def score_fincat(txt): |
|
li = [] |
|
highlight = [] |
|
txt = " " + txt + " " |
|
k = '' |
|
for word in txt.split(): |
|
if any(char.isdigit() for char in word): |
|
if word[-1] in ['.', ',', ';', ":", "-", "!", "?", ")", '"', "'"]: |
|
k = word[-1] |
|
word = word[:-1] |
|
st = txt.find(" " + word + k + " ")+1 |
|
k = '' |
|
ed = st + len(word) |
|
x = {'paragraph' : txt, 'offset_start':st, 'offset_end':ed} |
|
context_text = extract_context_words(x) |
|
features = bert_embedding_extract(context_text, word) |
|
if(features[0]=='None'): |
|
highlight.append(('None', ' ')) |
|
dff = pd.DataFrame(['None']) |
|
return highlight, dff |
|
prediction = lr_clf.predict(features.reshape(1, 768)) |
|
prediction_probability = '{:.4f}'.format(round(lr_clf.predict_proba(features.reshape(1, 768))[:,1][0], 4)) |
|
highlight.append((word, ' In-claim' if prediction==1 else 'Out-of-Claim')) |
|
li.append([word,' In-claim' if prediction==1 else 'Out-of-Claim', prediction_probability]) |
|
else: |
|
highlight.append((word, ' ')) |
|
headers = ['numeral', 'prediction', 'probability'] |
|
dff = pd.DataFrame(li) |
|
dff.columns = headers |
|
return highlight, dff |
|
|
|
|
|
|
|
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") |
|
def summarize_text(text): |
|
resp = summarizer(text) |
|
stext = resp[0]['summary_text'] |
|
return stext |
|
|
|
|
|
def split_in_sentences(text): |
|
doc = nlp(text) |
|
return [str(sent).strip() for sent in doc.sents] |
|
def make_spans(text,results): |
|
results_list = [] |
|
for i in range(len(results)): |
|
results_list.append(results[i]['label']) |
|
facts_spans = [] |
|
facts_spans = list(zip(split_in_sentences(text),results_list)) |
|
return facts_spans |
|
|
|
fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls") |
|
def fls(text): |
|
results = fls_model(split_in_sentences(text)) |
|
return make_spans(text,results) |
|
|
|
|
|
ner=pipeline('ner',model='Jean-Baptiste/camembert-ner-with-dates',tokenizer='Jean-Baptiste/camembert-ner-with-dates', aggregation_strategy="simple") |
|
def fin_ner(text): |
|
replaced_spans = ner(text) |
|
return replaced_spans |
|
|
|
|
|
|
|
def load_questions(): |
|
questions = [] |
|
with open('questions.txt') as f: |
|
questions = f.readlines() |
|
return questions |
|
|
|
|
|
def load_questions_short(): |
|
questions_short = [] |
|
with open('questionshort.txt') as f: |
|
questions_short = f.readlines() |
|
return questions_short |
|
|
|
def quad(query,file): |
|
with open(file.name) as f: |
|
paragraph = f.read() |
|
questions = load_questions() |
|
questions_short = load_questions_short() |
|
if (not len(paragraph)==0) and not (len(query)==0): |
|
print('getting predictions') |
|
predictions = run_prediction([query], paragraph, 'marshmellow77/roberta-base-cuad',n_best_size=5) |
|
answer = "" |
|
if predictions['0'] == "": |
|
answer = 'No answer found in document' |
|
else: |
|
with open("nbest.json") as jf: |
|
data = json.load(jf) |
|
for i in range(1): |
|
raw_answer=data['0'][i]['text'] |
|
answer += f"Answer {i+1}: {data['0'][i]['text']} -- \n" |
|
answer += f"Probability: {round(data['0'][i]['probability']*100,1)}%\n\n" |
|
|
|
|
|
|
|
|
|
highlight,dff=score_fincat(answer) |
|
return answer,summarize_text(answer),highlight,dff,fin_ner(answer),get_sustainability(answer),fls(answer) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iface = gr.Interface(fn=quad, inputs=[gr.inputs.Textbox(label='SEARCH QUERY'),gr.inputs.File(label='TXT FILE')], title="CONBERT",description="SUSTAINABILITY TOOL",article='Article', outputs=[gr.outputs.Textbox(label='Answer'),gr.outputs.Textbox(label='Summary'),"highlight","dataframe",gr.HighlightedText(label='NER'),gr.HighlightedText(label='SUSTAINABILITY'),gr.HighlightedText(label='FLS')], allow_flagging="never") |
|
|
|
|
|
iface.launch() |