File size: 1,723 Bytes
6cf5f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from transformers import RobertaTokenizer,pipeline
import torch
import nltk
from nltk.tokenize import sent_tokenize
from fin_readability_sustainability import BERTClass, do_predict
import pandas as pd
import en_core_web_sm

nltk.download('punkt')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

#SUSTAINABILITY STARTS
tokenizer_sus = RobertaTokenizer.from_pretrained('roberta-base')
model_sustain = BERTClass(2, "sustanability")
model_sustain.to(device)
model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict'])

def get_sustainability(text):
  df = pd.DataFrame({'sentence':sent_tokenize(text)})
  actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df)
  highlight = []
  for sent, prob in zip(df['sentence'].values, actual_predictions_sustainability[1]):
    if prob>=4.384316:
      highlight.append((sent, 'non-sustainable'))
    elif prob<=1.423736:
      highlight.append((sent, 'sustainable'))
    else:
      highlight.append((sent, '-'))
  return highlight
#SUSTAINABILITY ENDS


##Forward Looking Statement
nlp = en_core_web_sm.load()
def split_in_sentences(text):
    doc = nlp(text)
    return [str(sent).strip() for sent in doc.sents]
def make_spans(text,results):
    results_list = []
    for i in range(len(results)):
        results_list.append(results[i]['label'])
    facts_spans = []
    facts_spans = list(zip(split_in_sentences(text),results_list))
    return facts_spans    

fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls")
def fls(text):
    results = fls_model(split_in_sentences(text))
    return make_spans(text,results)