File size: 3,899 Bytes
7dc6a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eae2b8
7dc6a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0a2ed9
7dc6a72
 
 
 
 
a0a2ed9
7dc6a72
 
a0a2ed9
7dc6a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0a2ed9
 
 
7dc6a72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import asyncio
import base64
import logging
from io import BytesIO
from pathlib import Path

import uvicorn
from config import Config
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles

from PIL import Image
from pydantic import BaseModel
from wrapper import StreamDiffusionWrapper


logger = logging.getLogger("uvicorn")
PROJECT_DIR = Path(__file__).parent.parent


class PredictInputModel(BaseModel):
    """
    The input model for the /predict endpoint.
    """

    prompt: str


class PredictResponseModel(BaseModel):
    """
    The response model for the /predict endpoint.
    """

    base64_image: str


class UpdatePromptResponseModel(BaseModel):
    """
    The response model for the /update_prompt endpoint.
    """

    prompt: str


class Api:
    def __init__(self, config: Config) -> None:
        """
        Initialize the API.

        Parameters
        ----------
        config : Config
            The configuration.
        """
        self.config = config
        self.stream_diffusion = StreamDiffusionWrapper(
            mode=config.mode,
            model_id=config.model_id,
            lcm_lora_id=config.lcm_lora_id,
            vae_id=config.vae_id,
            device=config.device,
            dtype=config.dtype,
            acceleration=config.acceleration,
            t_index_list=config.t_index_list,
            warmup=config.warmup,
            use_safety_checker=config.use_safety_checker,
        )
        self.app = FastAPI()
        self.app.add_api_route(
            "/api/predict",
            self._predict,
            methods=["POST"],
            response_model=PredictResponseModel,
        )
        self.app.add_middleware(
            CORSMiddleware,
            allow_origins=["*"],
            allow_credentials=True,
            allow_methods=["*"],
            allow_headers=["*"],
        )
        self.app.mount(
            "/", StaticFiles(directory="../view/build", html=True), name="public"
        )

        self._predict_lock = asyncio.Lock()
        self._update_prompt_lock = asyncio.Lock()

    async def _predict(self, inp: PredictInputModel) -> PredictResponseModel:
        """
        Predict an image and return.

        Parameters
        ----------
        inp : PredictInputModel
            The input.

        Returns
        -------
        PredictResponseModel
            The prediction result.
        """
        async with self._predict_lock:
            return PredictResponseModel(
                base64_image=self._pil_to_base64(self.stream_diffusion(prompt=inp.prompt))
            )

    def _pil_to_base64(self, image: Image.Image, format: str = "JPEG") -> bytes:
        """
        Convert a PIL image to base64.

        Parameters
        ----------
        image : Image.Image
            The PIL image.

        format : str
            The image format, by default "JPEG".

        Returns
        -------
        bytes
            The base64 image.
        """
        buffered = BytesIO()
        image.convert("RGB").save(buffered, format=format)
        return base64.b64encode(buffered.getvalue()).decode("ascii")

    def _base64_to_pil(self, base64_image: str) -> Image.Image:
        """
        Convert a base64 image to PIL.

        Parameters
        ----------
        base64_image : str
            The base64 image.

        Returns
        -------
        Image.Image
            The PIL image.
        """
        if "base64," in base64_image:
            base64_image = base64_image.split("base64,")[1]
        return Image.open(BytesIO(base64.b64decode(base64_image))).convert("RGB")


if __name__ == "__main__":
    from config import Config

    config = Config()

    uvicorn.run(
        Api(config).app,
        host=config.host,
        port=config.port,
        workers=config.workers,
    )