Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
import torchaudio | |
from transformers import SeamlessM4Tv2Model, AutoProcessor | |
from lang_list import ( | |
ASR_TARGET_LANGUAGE_NAMES, | |
LANGUAGE_NAME_TO_CODE, | |
S2ST_TARGET_LANGUAGE_NAMES, | |
S2TT_TARGET_LANGUAGE_NAMES, | |
T2ST_TARGET_LANGUAGE_NAMES, | |
T2TT_TARGET_LANGUAGE_NAMES, | |
TEXT_SOURCE_LANGUAGE_NAMES, | |
) | |
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") | |
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") | |
AUDIO_SAMPLE_RATE = 16000.0 | |
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds | |
DEFAULT_TARGET_LANGUAGE = "French" | |
if torch.cuda.is_available(): | |
device = torch.device("cuda:0") | |
dtype = torch.float16 | |
else: | |
device = torch.device("cpu") | |
dtype = torch.float32 | |
def preprocess_audio(input_audio: str) -> None: | |
arr, org_sr = torchaudio.load(input_audio) | |
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE) | |
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE) | |
if new_arr.shape[1] > max_length: | |
new_arr = new_arr[:, :max_length] | |
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.") | |
torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE)) | |
def run_s2st( | |
input_audio: str, source_language: str, target_language: str | |
) -> tuple[tuple[int, np.ndarray] | None, str]: | |
preprocess_audio(input_audio) | |
source_language_code = LANGUAGE_NAME_TO_CODE[source_language] | |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language] | |
arr, org_sr = torchaudio.load(input_audio) | |
audio_inputs = processor(audios=arr, return_tensors="pt", | |
sampling_rate=model.config.sampling_rate).to(device) | |
output = model.generate(**audio_inputs, return_intermediate_token_ids=True, | |
tgt_lang=target_language_code,) | |
audio_array_from_audio = output[0].cpu().numpy().squeeze() | |
text_tokens = output[2] | |
translated_text_from_text = processor.decode(text_tokens.tolist()[0], skip_special_tokens=True) | |
return (int(AUDIO_SAMPLE_RATE), audio_array_from_audio), translated_text_from_text | |
description = """ | |
# Direct Speech to Speech Translation | |
This demo uses SeamlessM4T V2 to translate one speech directly into another. | |
The model being used here is [facebook/seamless-m4t-v2-large](https://huggingface.co./facebook/seamless-m4t-v2-large). | |
SeamlessM4T V2 is unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST) translation and more, without relying on multiple separate models. | |
""" | |
with gr.Blocks() as demo_s2st: | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
input_audio = gr.Audio(label="Input speech", type="filepath") | |
source_language = gr.Dropdown( | |
label="Source language", | |
choices=ASR_TARGET_LANGUAGE_NAMES, | |
value="English", | |
) | |
target_language = gr.Dropdown( | |
label="Target language", | |
choices=S2ST_TARGET_LANGUAGE_NAMES, | |
value=DEFAULT_TARGET_LANGUAGE, | |
) | |
btn = gr.Button("Translate") | |
with gr.Column(): | |
with gr.Group(): | |
output_audio = gr.Audio( | |
label="Translated speech", | |
autoplay=False, | |
streaming=False, | |
type="numpy", | |
) | |
output_text = gr.Textbox(label="Translated text") | |
gr.Examples( | |
examples=[ | |
["assets/sample_input.mp3", "English", "French"], | |
["assets/sample_input.mp3", "English", "Mandarin Chinese"], | |
["assets/sample_input_2.mp3", "English", "Hindi"], | |
["assets/sample_input_2.mp3", "English", "Spanish"], | |
], | |
inputs=[input_audio, source_language, target_language], | |
outputs=[output_audio, output_text], | |
fn=run_s2st, | |
cache_examples=True, | |
) | |
btn.click( | |
fn=run_s2st, | |
inputs=[input_audio, source_language, target_language], | |
outputs=[output_audio, output_text], | |
) | |
demo_s2st.launch() |