import sys sys.path.append('./') import gradio as gr import spaces import os import sys import subprocess import numpy as np from PIL import Image import cv2 import torch import random os.system("pip install -e ./controlnet_aux") from controlnet_aux import OpenposeDetector, CannyDetector from depth_anything_v2.dpt import DepthAnythingV2 from huggingface_hub import hf_hub_download from huggingface_hub import login hf_token = os.environ.get("HF_TOKEN_GATED") login(token=hf_token) MAX_SEED = np.iinfo(np.int32).max def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} } encoder = 'vitl' model = DepthAnythingV2(**model_configs[encoder]) filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model") state_dict = torch.load(filepath, map_location="cpu") model.load_state_dict(state_dict) model = model.to(DEVICE).eval() import torch from diffusers.utils import load_image from diffusers import FluxControlNetPipeline, FluxControlNetModel from diffusers.models import FluxMultiControlNetModel base_model = 'black-forest-labs/FLUX.1-dev' controlnet_model = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro' controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) controlnet = FluxMultiControlNetModel([controlnet]) pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) pipe.to("cuda") mode_mapping = {"canny":0, "tile":1, "depth":2, "blur":3, "openpose":4, "gray":5, "low quality": 6} strength_mapping = {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4} canny = CannyDetector() open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators") torch.backends.cuda.matmul.allow_tf32 = True pipe.vae.enable_tiling() pipe.vae.enable_slicing() pipe.enable_model_cpu_offload() # for saving memory def convert_from_image_to_cv2(img: Image) -> np.ndarray: return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) def convert_from_cv2_to_image(img: np.ndarray) -> Image: return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) def extract_depth(image): image = np.asarray(image) depth = model.infer_image(image[:, :, ::-1]) depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 depth = depth.astype(np.uint8) gray_depth = Image.fromarray(depth).convert('RGB') return gray_depth def extract_openpose(img): processed_image_open_pose = open_pose(img, hand_and_face=True) return processed_image_open_pose def extract_canny(image): processed_image_canny = canny(image) return processed_image_canny def apply_gaussian_blur(image, kernel_size=(21, 21)): image = convert_from_image_to_cv2(image) blurred_image = convert_from_cv2_to_image(cv2.GaussianBlur(image, kernel_size, 0)) return blurred_image def convert_to_grayscale(image): image = convert_from_image_to_cv2(image) gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)) return gray_image def add_gaussian_noise(image, mean=0, sigma=10): image = convert_from_image_to_cv2(image) noise = np.random.normal(mean, sigma, image.shape) noisy_image = convert_from_cv2_to_image(np.clip(image.astype(np.float32) + noise, 0, 255).astype(np.uint8)) return noisy_image def tile(input_image, resolution=768): input_image = convert_from_image_to_cv2(input_image) H, W, C = input_image.shape H = float(H) W = float(W) k = float(resolution) / min(H, W) H *= k W *= k H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) img = convert_from_cv2_to_image(img) return img def resize_img(input_image, max_side=768, min_side=512, size=None, pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): w, h = input_image.size if size is not None: w_resize_new, h_resize_new = size else: ratio = min_side / min(h, w) w, h = round(ratio*w), round(ratio*h) ratio = max_side / max(h, w) input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number input_image = input_image.resize([w_resize_new, h_resize_new], mode) if pad_to_max_side: res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 offset_x = (max_side - w_resize_new) // 2 offset_y = (max_side - h_resize_new) // 2 res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) input_image = Image.fromarray(res) return input_image @spaces.GPU(duration=180) def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)): control_mode_num = mode_mapping[control_mode] if cond_in is None: if image_in is not None: image_in = resize_img(load_image(image_in)) if control_mode == "canny": control_image = extract_canny(image_in) elif control_mode == "depth": control_image = extract_depth(image_in) elif control_mode == "openpose": control_image = extract_openpose(image_in) elif control_mode == "blur": control_image = apply_gaussian_blur(image_in) elif control_mode == "low quality": control_image = add_gaussian_noise(image_in) elif control_mode == "gray": control_image = convert_to_grayscale(image_in) elif control_mode == "tile": control_image = tile(image_in) else: control_image = resize_img(load_image(cond_in)) width, height = control_image.size image = pipe( prompt, control_image=[control_image], control_mode=[control_mode_num], width=width, height=height, controlnet_conditioning_scale=[control_strength], num_inference_steps=inference_steps, guidance_scale=guidance_scale, generator=torch.manual_seed(seed), ).images[0] torch.cuda.empty_cache() return image, control_image, gr.update(visible=True) css=""" #col-container{ margin: 0 auto; max-width: 1080px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(""" # FLUX.1-dev-ControlNet-Union-Pro A unified ControlNet for FLUX.1-dev model from the InstantX team and Shakker Labs. Model card: [Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro](https://huggingface.co./Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro).
The recommended strength: {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4}. Long prompt is preferred by FLUX.1. """) with gr.Column(): with gr.Row(): with gr.Column(): with gr.Row(equal_height=True): cond_in = gr.Image(label="Upload a processed control image", sources=["upload"], type="filepath") image_in = gr.Image(label="Extract condition from a reference image (Optional)", sources=["upload"], type="filepath") prompt = gr.Textbox(label="Prompt", value="best quality") with gr.Accordion("Controlnet"): control_mode = gr.Radio( ["canny", "depth", "openpose", "gray", "blur", "tile", "low quality"], label="Mode", value="gray", info="select the control mode, one for all" ) control_strength = gr.Slider( label="control strength", minimum=0, maximum=1.0, step=0.05, value=0.50, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Accordion("Advanced settings", open=False): with gr.Column(): with gr.Row(): inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=24) guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=3.5) submit_btn = gr.Button("Submit") with gr.Column(): result = gr.Image(label="Result") processed_cond = gr.Image(label="Preprocessed Cond") submit_btn.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False ).then( fn = infer, inputs = [cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed], outputs = [result, processed_cond], show_api=False ) demo.queue(api_open=False) demo.launch()