File size: 10,340 Bytes
6c9da67
 
 
bc68abe
897c6c0
 
 
 
bc68abe
897c6c0
 
bc68abe
897c6c0
bc68abe
6c9da67
 
fa82983
897c6c0
bc68abe
dfd025a
 
b7508ac
 
 
bc68abe
 
 
897c6c0
bc68abe
 
897c6c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48ab7a2
897c6c0
 
 
c30ca1a
 
897c6c0
 
 
 
 
 
 
 
 
 
 
 
 
 
f0394a9
 
 
48ab7a2
f0394a9
897c6c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16ce666
897c6c0
 
 
 
 
 
 
 
 
 
 
 
 
16ce666
897c6c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16ce666
897c6c0
bc68abe
897c6c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc68abe
 
897c6c0
 
 
 
 
 
 
 
 
 
6726142
 
bc68abe
897c6c0
 
bc68abe
 
897c6c0
bc68abe
897c6c0
bc68abe
 
 
 
897c6c0
 
 
 
bc68abe
 
897c6c0
bc68abe
 
897c6c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc68abe
897c6c0
 
 
 
 
 
 
bc68abe
897c6c0
 
 
bc68abe
 
897c6c0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import sys
sys.path.append('./')

import gradio as gr
import spaces
import os
import sys
import subprocess
import numpy as np
from PIL import Image
import cv2
import torch
import random

os.system("pip install -e ./controlnet_aux")

from controlnet_aux import OpenposeDetector, CannyDetector
from depth_anything_v2.dpt import DepthAnythingV2

from huggingface_hub import hf_hub_download

from huggingface_hub import login
hf_token = os.environ.get("HF_TOKEN_GATED")
login(token=hf_token)

MAX_SEED = np.iinfo(np.int32).max

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}

encoder = 'vitl'
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()

import torch
from diffusers.utils import load_image
from diffusers import FluxControlNetPipeline, FluxControlNetModel
from diffusers.models import FluxMultiControlNetModel

base_model = 'black-forest-labs/FLUX.1-dev'
controlnet_model = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro'
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
controlnet = FluxMultiControlNetModel([controlnet])
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
pipe.to("cuda")

mode_mapping = {"canny":0, "tile":1, "depth":2, "blur":3, "openpose":4, "gray":5, "low quality": 6}
strength_mapping = {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4}

canny = CannyDetector()
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")

torch.backends.cuda.matmul.allow_tf32 = True
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.enable_model_cpu_offload() # for saving memory

def convert_from_image_to_cv2(img: Image) -> np.ndarray:
    return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

def convert_from_cv2_to_image(img: np.ndarray) -> Image:
    return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

def extract_depth(image):
    image = np.asarray(image)
    depth = model.infer_image(image[:, :, ::-1])
    depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
    depth = depth.astype(np.uint8)
    gray_depth = Image.fromarray(depth).convert('RGB') 
    return gray_depth

def extract_openpose(img):
    processed_image_open_pose = open_pose(img, hand_and_face=True)
    return processed_image_open_pose
    
def extract_canny(image):
    processed_image_canny = canny(image)
    return processed_image_canny

def apply_gaussian_blur(image, kernel_size=(21, 21)):
    image = convert_from_image_to_cv2(image)
    blurred_image = convert_from_cv2_to_image(cv2.GaussianBlur(image, kernel_size, 0))
    return blurred_image

def convert_to_grayscale(image):
    image = convert_from_image_to_cv2(image)
    gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
    return gray_image

def add_gaussian_noise(image, mean=0, sigma=10):
    image = convert_from_image_to_cv2(image)
    noise = np.random.normal(mean, sigma, image.shape)
    noisy_image = convert_from_cv2_to_image(np.clip(image.astype(np.float32) + noise, 0, 255).astype(np.uint8))
    return noisy_image

def tile(input_image, resolution=768):
    input_image = convert_from_image_to_cv2(input_image)
    H, W, C = input_image.shape
    H = float(H)
    W = float(W)
    k = float(resolution) / min(H, W)
    H *= k
    W *= k
    H = int(np.round(H / 64.0)) * 64
    W = int(np.round(W / 64.0)) * 64
    img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
    img = convert_from_cv2_to_image(img)
    return img

def resize_img(input_image, max_side=768, min_side=512, size=None, 
               pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):

    w, h = input_image.size
    if size is not None:
        w_resize_new, h_resize_new = size
    else:
        ratio = min_side / min(h, w)
        w, h = round(ratio*w), round(ratio*h)
        ratio = max_side / max(h, w)
        input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
        w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
        h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
    input_image = input_image.resize([w_resize_new, h_resize_new], mode)

    if pad_to_max_side:
        res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
        offset_x = (max_side - w_resize_new) // 2
        offset_y = (max_side - h_resize_new) // 2
        res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
        input_image = Image.fromarray(res)
    return input_image

@spaces.GPU(duration=180)
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)):
        
    control_mode_num = mode_mapping[control_mode]
    
    if cond_in is None:
        if image_in is not None:
            image_in = resize_img(load_image(image_in))
            if control_mode == "canny":
                control_image = extract_canny(image_in)
            elif control_mode == "depth":
                control_image = extract_depth(image_in)
            elif control_mode == "openpose":
                control_image = extract_openpose(image_in)
            elif control_mode == "blur":
                control_image = apply_gaussian_blur(image_in)
            elif control_mode == "low quality":
                control_image = add_gaussian_noise(image_in)
            elif control_mode == "gray":
                control_image = convert_to_grayscale(image_in)
            elif control_mode == "tile":
                control_image = tile(image_in)
    else:
        control_image = resize_img(load_image(cond_in))

    width, height = control_image.size
    
    image = pipe(
        prompt, 
        control_image=[control_image],
        control_mode=[control_mode_num],
        width=width,
        height=height,
        controlnet_conditioning_scale=[control_strength],
        num_inference_steps=inference_steps, 
        guidance_scale=guidance_scale,
        generator=torch.manual_seed(seed),
    ).images[0]

    torch.cuda.empty_cache() 
    
    return image, control_image, gr.update(visible=True)
   

css="""
#col-container{
    margin: 0 auto;
    max-width: 1080px;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # FLUX.1-dev-ControlNet-Union-Pro
        A unified ControlNet for FLUX.1-dev model from the InstantX team and Shakker Labs. Model card: [Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro](https://huggingface.co./Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro). <br />
        The recommended strength: {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4}. Long prompt is preferred by FLUX.1.
        """)
        
        with gr.Column():
            
            with gr.Row():
                with gr.Column():
                    
                    with gr.Row(equal_height=True):
                        cond_in = gr.Image(label="Upload a processed control image", sources=["upload"], type="filepath")
                        image_in = gr.Image(label="Extract condition from a reference image (Optional)", sources=["upload"], type="filepath")
                    
                    prompt = gr.Textbox(label="Prompt", value="best quality")
                    
                    with gr.Accordion("Controlnet"):
                        control_mode = gr.Radio(
                            ["canny", "depth", "openpose", "gray", "blur", "tile", "low quality"], label="Mode", value="gray",
                            info="select the control mode, one for all"
                        )
                        
                        control_strength = gr.Slider(
                            label="control strength",
                            minimum=0,
                            maximum=1.0,
                            step=0.05,
                            value=0.50,
                        )
                    
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    
                    with gr.Accordion("Advanced settings", open=False):
                        with gr.Column():
                            with gr.Row():
                                inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=24)
                                guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=3.5)
                    
                    submit_btn = gr.Button("Submit")
                    
                with gr.Column():
                    result = gr.Image(label="Result")
                    processed_cond = gr.Image(label="Preprocessed Cond")

    submit_btn.click(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False
    ).then(
        fn = infer,
        inputs = [cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed],
        outputs = [result, processed_cond],
        show_api=False
    )

demo.queue(api_open=False)
demo.launch()