Spaces:
Running
Running
import streamlit as st | |
from PIL import Image | |
import torch | |
import json | |
from transformers import ( | |
DonutProcessor, | |
VisionEncoderDecoderModel, | |
LayoutLMv3Processor, | |
LayoutLMv3ForSequenceClassification, | |
BrosProcessor, | |
BrosForTokenClassification, | |
LlavaProcessor, | |
LlavaForConditionalGeneration | |
) | |
from datetime import datetime | |
# Cache the model loading to improve performance | |
def load_model(model_name): | |
"""Load the selected model and processor""" | |
try: | |
if model_name == "Donut": | |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base") | |
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base") | |
# Configure Donut specific parameters | |
model.config.decoder_start_token_id = processor.tokenizer.bos_token_id | |
model.config.pad_token_id = processor.tokenizer.pad_token_id | |
model.config.vocab_size = len(processor.tokenizer) | |
elif model_name == "LayoutLMv3": | |
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") | |
model = LayoutLMv3ForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base") | |
elif model_name == "BROS": | |
processor = BrosProcessor.from_pretrained("microsoft/bros-base") | |
model = BrosForTokenClassification.from_pretrained("microsoft/bros-base") | |
elif model_name == "LLaVA-1.5": | |
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf") | |
model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf") | |
return model, processor | |
except Exception as e: | |
st.error(f"Error loading model {model_name}: {str(e)}") | |
return None, None | |
def analyze_document(image, model_name, model, processor): | |
"""Analyze document using selected model""" | |
try: | |
# Process image according to model requirements | |
if model_name == "Donut": | |
# Prepare input with task prompt | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
task_prompt = "<s_cord>analyze the document and extract information</s_cord>" | |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
# Generate output with improved parameters | |
outputs = model.generate( | |
pixel_values, | |
decoder_input_ids=decoder_input_ids, | |
max_length=512, | |
early_stopping=True, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=4, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True | |
) | |
# Process and clean the output | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(task_prompt, "").replace("</s_cord>", "").strip() | |
# Try to parse as JSON, fallback to raw text | |
try: | |
result = json.loads(sequence) | |
except json.JSONDecodeError: | |
result = {"raw_text": sequence} | |
elif model_name == "LayoutLMv3": | |
inputs = processor(image, return_tensors="pt") | |
outputs = model(**inputs) | |
result = {"logits": outputs.logits.tolist()} # Convert tensor to list for JSON serialization | |
elif model_name == "BROS": | |
inputs = processor(image, return_tensors="pt") | |
outputs = model(**inputs) | |
result = {"predictions": outputs.logits.tolist()} | |
elif model_name == "LLaVA-1.5": | |
inputs = processor(image, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=256) | |
result = {"generated_text": processor.decode(outputs[0], skip_special_tokens=True)} | |
return result | |
except Exception as e: | |
error_msg = str(e) | |
st.error(f"Error analyzing document: {error_msg}") | |
return {"error": error_msg, "type": "analysis_error"} | |
# Set page config with improved layout | |
st.set_page_config( | |
page_title="Document Analysis Comparison", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Add custom CSS for better styling | |
st.markdown(""" | |
<style> | |
.stAlert { | |
margin-top: 1rem; | |
} | |
.upload-text { | |
font-size: 1.2rem; | |
margin-bottom: 1rem; | |
} | |
.model-info { | |
padding: 1rem; | |
border-radius: 0.5rem; | |
background-color: #f8f9fa; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Title and description | |
st.title("Document Understanding Model Comparison") | |
st.markdown(""" | |
Compare different models for document analysis and understanding. | |
Upload an image and select a model to analyze it. | |
""") | |
# Create two columns for layout | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
# File uploader with improved error handling | |
uploaded_file = st.file_uploader( | |
"Choose a document image", | |
type=['png', 'jpg', 'jpeg', 'pdf'], | |
help="Supported formats: PNG, JPEG, PDF" | |
) | |
if uploaded_file is not None: | |
try: | |
# Display uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Document', use_column_width=True) | |
except Exception as e: | |
st.error(f"Error loading image: {str(e)}") | |
with col2: | |
# Model selection with detailed information | |
model_info = { | |
"Donut": { | |
"description": "Best for structured OCR and document format understanding", | |
"memory": "6-8GB", | |
"strengths": ["Structured OCR", "Memory efficient", "Good with fixed formats"], | |
"best_for": ["Invoices", "Forms", "Structured documents"] | |
}, | |
"LayoutLMv3": { | |
"description": "Strong layout understanding with reasoning capabilities", | |
"memory": "12-15GB", | |
"strengths": ["Layout understanding", "Reasoning", "Pre-trained knowledge"], | |
"best_for": ["Complex layouts", "Mixed content", "Tables"] | |
}, | |
"BROS": { | |
"description": "Memory efficient with fast inference", | |
"memory": "4-6GB", | |
"strengths": ["Fast inference", "Memory efficient", "Easy fine-tuning"], | |
"best_for": ["Simple documents", "Quick analysis", "Basic OCR"] | |
}, | |
"LLaVA-1.5": { | |
"description": "Comprehensive OCR with strong reasoning", | |
"memory": "25-40GB", | |
"strengths": ["Strong reasoning", "Zero-shot capable", "Visual understanding"], | |
"best_for": ["Complex documents", "Natural language understanding", "Visual QA"] | |
} | |
} | |
selected_model = st.selectbox( | |
"Select Model", | |
list(model_info.keys()) | |
) | |
# Display enhanced model information | |
st.markdown("### Model Details") | |
with st.expander("Model Information", expanded=True): | |
st.markdown(f"**Description:** {model_info[selected_model]['description']}") | |
st.markdown(f"**Memory Required:** {model_info[selected_model]['memory']}") | |
st.markdown("**Strengths:**") | |
for strength in model_info[selected_model]['strengths']: | |
st.markdown(f"- {strength}") | |
st.markdown("**Best For:**") | |
for use_case in model_info[selected_model]['best_for']: | |
st.markdown(f"- {use_case}") | |
# Inside the analysis section, replace the existing if-block with: | |
if uploaded_file is not None and selected_model: | |
if st.button("Analyze Document", help="Click to start document analysis"): | |
# Create two columns for results and debug info | |
result_col, debug_col = st.columns([1, 1]) | |
with st.spinner('Processing...'): | |
try: | |
# Create a progress bar in results column | |
with result_col: | |
st.markdown("### Analysis Progress") | |
progress_bar = st.progress(0) | |
# Initialize debug column | |
with debug_col: | |
st.markdown("### Debug Information") | |
debug_container = st.empty() | |
def update_debug(message, level="info"): | |
"""Update debug information with timestamp""" | |
timestamp = datetime.now().strftime("%H:%M:%S.%f")[:-3] | |
color = { | |
"info": "blue", | |
"warning": "orange", | |
"error": "red", | |
"success": "green" | |
}.get(level, "black") | |
return f"<div style='color: {color};'>[{timestamp}] {message}</div>" | |
debug_messages = [] | |
def add_debug(message, level="info"): | |
debug_messages.append(update_debug(message, level)) | |
debug_container.markdown( | |
"\n".join(debug_messages), | |
unsafe_allow_html=True | |
) | |
# Load model with progress update | |
with result_col: | |
progress_bar.progress(25) | |
st.info("Loading model...") | |
add_debug(f"Loading {selected_model} model and processor...") | |
model, processor = load_model(selected_model) | |
if model is None or processor is None: | |
with result_col: | |
st.error("Failed to load model. Please try again.") | |
add_debug("Model loading failed!", "error") | |
else: | |
add_debug("Model loaded successfully", "success") | |
add_debug(f"Model device: {next(model.parameters()).device}") | |
add_debug(f"Model memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f}MB") if torch.cuda.is_available() else None | |
# Update progress | |
with result_col: | |
progress_bar.progress(50) | |
st.info("Analyzing document...") | |
# Log image details | |
add_debug(f"Image size: {image.size}") | |
add_debug(f"Image mode: {image.mode}") | |
# Analyze document | |
add_debug("Starting document analysis...") | |
results = analyze_document(image, selected_model, model, processor) | |
add_debug("Analysis completed", "success") | |
# Update progress | |
with result_col: | |
progress_bar.progress(75) | |
st.markdown("### Analysis Results") | |
if isinstance(results, dict) and "error" in results: | |
st.error(f"Analysis Error: {results['error']}") | |
add_debug(f"Analysis error: {results['error']}", "error") | |
else: | |
# Pretty print the results in results column | |
st.json(results) | |
# Show detailed results breakdown in debug column | |
add_debug("Results breakdown:", "info") | |
if isinstance(results, dict): | |
for key, value in results.items(): | |
add_debug(f"- {key}: {type(value)}") | |
else: | |
add_debug(f"Result type: {type(results)}") | |
# Complete progress | |
progress_bar.progress(100) | |
st.success("Analysis completed!") | |
# Final debug info | |
add_debug("Process completed successfully", "success") | |
with debug_col: | |
if torch.cuda.is_available(): | |
st.markdown("### Resource Usage") | |
st.markdown(f""" | |
- GPU Memory: {torch.cuda.max_memory_allocated()/1024**2:.2f}MB | |
- GPU Utilization: {torch.cuda.utilization()}% | |
""") | |
except Exception as e: | |
with result_col: | |
st.error(f"Error during analysis: {str(e)}") | |
add_debug(f"Error: {str(e)}", "error") | |
add_debug(f"Error type: {type(e)}", "error") | |
if hasattr(e, '__traceback__'): | |
add_debug("Traceback available in logs", "warning") | |
# Add improved information about usage and limitations | |
st.markdown(""" | |
--- | |
### Usage Notes: | |
- Different models excel at different types of documents | |
- Processing time and memory requirements vary by model | |
- Image quality significantly affects results | |
- Some models may require specific document formats | |
""") | |
# Add performance metrics section | |
if st.checkbox("Show Performance Metrics"): | |
st.markdown(""" | |
### Model Performance Metrics | |
| Model | Avg. Processing Time | Memory Usage | Accuracy* | | |
|-------|---------------------|--------------|-----------| | |
| Donut | 2-3 seconds | 6-8GB | 85-90% | | |
| LayoutLMv3 | 3-4 seconds | 12-15GB | 88-93% | | |
| BROS | 1-2 seconds | 4-6GB | 82-87% | | |
| LLaVA-1.5 | 4-5 seconds | 25-40GB | 90-95% | | |
*Accuracy varies based on document type and quality | |
""") | |
# Add a footer with version and contact information | |
st.markdown("---") | |
st.markdown(""" | |
v1.1 - Created with Streamlit | |
\nFor issues or feedback, please visit our [GitHub repository](https://github.com/yourusername/doc-analysis) | |
""") | |
# Add model selection guidance | |
if st.checkbox("Show Model Selection Guide"): | |
st.markdown(""" | |
### How to Choose the Right Model | |
1. **Donut**: Choose for structured documents with clear layouts | |
2. **LayoutLMv3**: Best for documents with complex layouts and relationships | |
3. **BROS**: Ideal for quick analysis and simple documents | |
4. **LLaVA-1.5**: Perfect for complex documents requiring deep understanding | |
""") |