Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,87 @@
|
|
1 |
import os
|
2 |
-
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
-
|
6 |
from groq import Groq
|
7 |
|
8 |
-
|
9 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
10 |
|
11 |
# Initialize Groq API client
|
12 |
-
GROQ_API_KEY = "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"
|
13 |
client = Groq(api_key=GROQ_API_KEY)
|
14 |
|
15 |
-
#
|
16 |
-
def
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
embeddings = [generate_embeddings(row.to_string()) for _, row in data.iterrows()]
|
23 |
-
embeddings = np.array(embeddings).astype("float32")
|
24 |
-
index.add(embeddings)
|
25 |
-
return index, embeddings
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Generate a detailed report using Groq's generative model
|
35 |
-
def generate_report_with_groq(query, results):
|
36 |
-
input_text = f"Based on the query '{query}', the following insights are generated:\n\n{results.to_string(index=False)}"
|
37 |
-
response = client.chat.completions.create(
|
38 |
-
messages=[{"role": "user", "content": input_text}],
|
39 |
-
model="llama3-8b-8192",
|
40 |
-
stream=False
|
41 |
)
|
42 |
-
return response.choices[0].message.content
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
# User
|
58 |
-
|
59 |
-
print(f"User Query: {query}")
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import streamlit as st
|
5 |
from groq import Groq
|
6 |
|
7 |
+
GROQ_API_KEY = "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"
|
|
|
8 |
|
9 |
# Initialize Groq API client
|
|
|
10 |
client = Groq(api_key=GROQ_API_KEY)
|
11 |
|
12 |
+
# Function to analyze energy usage
|
13 |
+
def analyze_energy_usage(data, household_id=None):
|
14 |
+
if household_id:
|
15 |
+
# Filter data for a specific household
|
16 |
+
household_data = data[data["Household ID"] == household_id]
|
17 |
+
else:
|
18 |
+
household_data = data
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Aggregate data
|
21 |
+
total_usage = household_data["Energy Usage (kWh)"].sum()
|
22 |
+
avg_cost = household_data["Cost"].mean()
|
23 |
+
peak_time_period = (
|
24 |
+
household_data.groupby("Time Period")["Energy Usage (kWh)"]
|
25 |
+
.sum()
|
26 |
+
.idxmax()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
|
|
28 |
|
29 |
+
# Generate a summary report
|
30 |
+
report_summary = f"""
|
31 |
+
Total Energy Usage: {total_usage} kWh
|
32 |
+
Average Cost: ${avg_cost:.2f}
|
33 |
+
Peak Usage Time Period: {peak_time_period}
|
34 |
+
"""
|
35 |
+
return report_summary, household_data
|
36 |
|
37 |
+
# Function to generate recommendations using Groq's API
|
38 |
+
def generate_recommendations(context):
|
39 |
+
try:
|
40 |
+
response = client.chat.completions.create(
|
41 |
+
messages=[
|
42 |
+
{
|
43 |
+
"role": "user",
|
44 |
+
"content": f"Based on the following data:\n{context}\nProvide energy-saving recommendations and insights."
|
45 |
+
}
|
46 |
+
],
|
47 |
+
model="llama3-8b-8192",
|
48 |
+
stream=False,
|
49 |
+
)
|
50 |
+
return response.choices[0].message.content
|
51 |
+
except Exception as e:
|
52 |
+
return f"An error occurred: {e}"
|
53 |
|
54 |
+
# Streamlit App
|
55 |
+
st.title("Energy Usage Analysis Report Generator")
|
56 |
+
|
57 |
+
# Upload Dataset
|
58 |
+
uploaded_file = st.file_uploader("Upload your energy usage dataset (CSV)", type="csv")
|
59 |
+
if uploaded_file:
|
60 |
+
# Load dataset
|
61 |
+
data = pd.read_csv(uploaded_file)
|
62 |
+
st.write("Dataset Preview:", data.head())
|
63 |
|
64 |
+
# User Input
|
65 |
+
household_id = st.text_input("Enter Household ID for specific analysis (optional)")
|
|
|
66 |
|
67 |
+
# Analyze Data
|
68 |
+
if st.button("Analyze Energy Usage"):
|
69 |
+
with st.spinner("Analyzing..."):
|
70 |
+
report_summary, filtered_data = analyze_energy_usage(data, household_id)
|
71 |
+
st.subheader("Energy Usage Summary")
|
72 |
+
st.text(report_summary)
|
73 |
|
74 |
+
# Generate recommendations
|
75 |
+
st.subheader("Recommendations")
|
76 |
+
context = filtered_data.to_string(index=False)
|
77 |
+
recommendations = generate_recommendations(context)
|
78 |
+
st.text(recommendations)
|
79 |
|
80 |
+
# Footer
|
81 |
+
st.sidebar.title("About")
|
82 |
+
st.sidebar.info(
|
83 |
+
"""
|
84 |
+
This app generates energy usage reports and recommendations based on uploaded data.
|
85 |
+
Built with Streamlit and powered by Groq's language model.
|
86 |
+
"""
|
87 |
+
)
|