|
import os |
|
import logging |
|
from collections import OrderedDict |
|
import math |
|
import warnings |
|
from typing import Callable, Optional, Sequence |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast |
|
from .utils import to_2tuple |
|
|
|
if os.getenv('ENV_TYPE') == 'deepspeed': |
|
try: |
|
import deepspeed |
|
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint |
|
except: |
|
print("Please 'pip install deepspeed'") |
|
deepspeed = None |
|
from torch.utils.checkpoint import checkpoint |
|
else: |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
try: |
|
import xformers.ops as xops |
|
except ImportError: |
|
xops = None |
|
print("Please 'pip install xformers'") |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
|
r"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \leq \text{mean} \leq b`. |
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
Examples: |
|
>>> w = torch.empty(3, 5) |
|
>>> nn.init.trunc_normal_(w) |
|
""" |
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|
|
|
|
|
|
class LayerNormFp32(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward(self, x: torch.Tensor): |
|
output = F.layer_norm( |
|
x.float(), |
|
self.normalized_shape, |
|
self.weight.float() if self.weight is not None else None, |
|
self.bias.float() if self.bias is not None else None, |
|
self.eps, |
|
) |
|
return output.type_as(x) |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm (with cast back to input dtype).""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
return x.to(orig_type) |
|
|
|
class QuickGELU(nn.Module): |
|
|
|
def forward(self, x: torch.Tensor): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__(self, dim, init_values=1e-5, inplace=False): |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
|
|
class PatchDropout(nn.Module): |
|
""" |
|
https://arxiv.org/abs/2212.00794 |
|
""" |
|
|
|
def __init__(self, prob, exclude_first_token=True): |
|
super().__init__() |
|
assert 0 <= prob < 1. |
|
self.prob = prob |
|
self.exclude_first_token = exclude_first_token |
|
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}") |
|
|
|
def forward(self, x): |
|
if not self.training or self.prob == 0.: |
|
return x |
|
|
|
if self.exclude_first_token: |
|
cls_tokens, x = x[:, :1], x[:, 1:] |
|
else: |
|
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) |
|
|
|
batch = x.size()[0] |
|
num_tokens = x.size()[1] |
|
|
|
batch_indices = torch.arange(batch) |
|
batch_indices = batch_indices[..., None] |
|
|
|
keep_prob = 1 - self.prob |
|
num_patches_keep = max(1, int(num_tokens * keep_prob)) |
|
|
|
rand = torch.randn(batch, num_tokens) |
|
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices |
|
|
|
x = x[batch_indices, patch_indices_keep] |
|
|
|
if self.exclude_first_token: |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
if self.training and os.getenv('RoPE') == '1': |
|
return x, patch_indices_keep |
|
|
|
return x |
|
|
|
|
|
def _in_projection_packed( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
w: torch.Tensor, |
|
b: Optional[torch.Tensor] = None, |
|
): |
|
""" |
|
https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726 |
|
""" |
|
E = q.size(-1) |
|
if k is v: |
|
if q is k: |
|
|
|
return F.linear(q, w, b).chunk(3, dim=-1) |
|
else: |
|
|
|
w_q, w_kv = w.split([E, E * 2]) |
|
if b is None: |
|
b_q = b_kv = None |
|
else: |
|
b_q, b_kv = b.split([E, E * 2]) |
|
return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1) |
|
else: |
|
w_q, w_k, w_v = w.chunk(3) |
|
if b is None: |
|
b_q = b_k = b_v = None |
|
else: |
|
b_q, b_k, b_v = b.chunk(3) |
|
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v) |
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=True, |
|
scaled_cosine=False, |
|
scale_heads=False, |
|
logit_scale_max=math.log(1. / 0.01), |
|
attn_drop=0., |
|
proj_drop=0., |
|
xattn=False, |
|
rope=False |
|
): |
|
super().__init__() |
|
self.scaled_cosine = scaled_cosine |
|
self.scale_heads = scale_heads |
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads' |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim ** -0.5 |
|
self.logit_scale_max = logit_scale_max |
|
|
|
|
|
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) |
|
if qkv_bias: |
|
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) |
|
else: |
|
self.in_proj_bias = None |
|
|
|
if self.scaled_cosine: |
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) |
|
else: |
|
self.logit_scale = None |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
if self.scale_heads: |
|
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) |
|
else: |
|
self.head_scale = None |
|
self.out_proj = nn.Linear(dim, dim) |
|
self.out_drop = nn.Dropout(proj_drop) |
|
self.xattn = xattn |
|
self.xattn_drop = attn_drop |
|
self.rope = rope |
|
|
|
def forward(self, x, attn_mask: Optional[torch.Tensor] = None): |
|
L, N, C = x.shape |
|
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) |
|
if self.xattn: |
|
q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) |
|
k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) |
|
v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) |
|
|
|
x = xops.memory_efficient_attention( |
|
q, k, v, |
|
p=self.xattn_drop, |
|
scale=self.scale if self.logit_scale is None else None, |
|
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None, |
|
) |
|
else: |
|
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) |
|
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) |
|
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) |
|
|
|
if self.logit_scale is not None: |
|
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) |
|
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() |
|
attn = attn.view(N, self.num_heads, L, L) * logit_scale |
|
attn = attn.view(-1, L, L) |
|
else: |
|
q = q * self.scale |
|
attn = torch.bmm(q, k.transpose(-1, -2)) |
|
|
|
if attn_mask is not None: |
|
if attn_mask.dtype == torch.bool: |
|
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) |
|
new_attn_mask.masked_fill_(attn_mask, float("-inf")) |
|
attn_mask = new_attn_mask |
|
attn += attn_mask |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = torch.bmm(attn, v) |
|
|
|
if self.head_scale is not None: |
|
x = x.view(N, self.num_heads, L, C) * self.head_scale |
|
x = x.view(-1, L, C) |
|
x = x.transpose(0, 1).reshape(L, N, C) |
|
x = self.out_proj(x) |
|
x = self.out_drop(x) |
|
return x |
|
|
|
class CustomAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=True, |
|
scaled_cosine=True, |
|
scale_heads=False, |
|
logit_scale_max=math.log(1. / 0.01), |
|
attn_drop=0., |
|
proj_drop=0., |
|
xattn=False |
|
): |
|
super().__init__() |
|
self.scaled_cosine = scaled_cosine |
|
self.scale_heads = scale_heads |
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads' |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim ** -0.5 |
|
self.logit_scale_max = logit_scale_max |
|
|
|
|
|
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) |
|
if qkv_bias: |
|
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) |
|
else: |
|
self.in_proj_bias = None |
|
|
|
if self.scaled_cosine: |
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) |
|
else: |
|
self.logit_scale = None |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
if self.scale_heads: |
|
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) |
|
else: |
|
self.head_scale = None |
|
self.out_proj = nn.Linear(dim, dim) |
|
self.out_drop = nn.Dropout(proj_drop) |
|
self.xattn = xattn |
|
self.xattn_drop = attn_drop |
|
|
|
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias) |
|
N_q, B_q, C_q = q.shape |
|
N_k, B_k, C_k = k.shape |
|
N_v, B_v, C_v = v.shape |
|
if self.xattn: |
|
|
|
q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1) |
|
k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1) |
|
v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1) |
|
|
|
x = xops.memory_efficient_attention( |
|
q, k, v, |
|
p=self.xattn_drop, |
|
scale=self.scale if self.logit_scale is None else None, |
|
attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None |
|
) |
|
else: |
|
|
|
q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1) |
|
k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1) |
|
v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1) |
|
|
|
if self.logit_scale is not None: |
|
|
|
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) |
|
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() |
|
attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale |
|
attn = attn.view(-1, N_q, N_k) |
|
else: |
|
q = q * self.scale |
|
attn = torch.bmm(q, k.transpose(-1, -2)) |
|
|
|
if attn_mask is not None: |
|
if attn_mask.dtype == torch.bool: |
|
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) |
|
new_attn_mask.masked_fill_(attn_mask, float("-inf")) |
|
attn_mask = new_attn_mask |
|
attn += attn_mask |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = torch.bmm(attn, v) |
|
|
|
if self.head_scale is not None: |
|
x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale |
|
x = x.view(-1, N_q, C_q) |
|
x = x.transpose(0, 1).reshape(N_q, B_q, C_q) |
|
x = self.out_proj(x) |
|
x = self.out_drop(x) |
|
return x |
|
|
|
class CustomResidualAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
d_model: int, |
|
n_head: int, |
|
mlp_ratio: float = 4.0, |
|
ls_init_value: float = None, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
scale_cosine_attn: bool = False, |
|
scale_heads: bool = False, |
|
scale_attn: bool = False, |
|
scale_fc: bool = False, |
|
cross_attn: bool = False, |
|
xattn: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.ln_1 = norm_layer(d_model) |
|
self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1 |
|
self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1 |
|
self.attn = CustomAttention( |
|
d_model, n_head, |
|
qkv_bias=True, |
|
attn_drop=0., |
|
proj_drop=0., |
|
scaled_cosine=scale_cosine_attn, |
|
scale_heads=scale_heads, |
|
xattn=xattn |
|
) |
|
|
|
self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity() |
|
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() |
|
|
|
self.ln_2 = norm_layer(d_model) |
|
mlp_width = int(d_model * mlp_ratio) |
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, mlp_width)), |
|
('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()), |
|
("gelu", act_layer()), |
|
("c_proj", nn.Linear(mlp_width, d_model)) |
|
])) |
|
|
|
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() |
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask))) |
|
q = q + self.ls_2(self.mlp(self.ln_2(q))) |
|
return q |
|
|
|
class CustomTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
mlp_ratio: float = 4.0, |
|
ls_init_value: float = None, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
scale_cosine_attn: bool = True, |
|
scale_heads: bool = False, |
|
scale_attn: bool = False, |
|
scale_fc: bool = False, |
|
cross_attn: bool = False, |
|
xattn: bool = False, |
|
): |
|
super().__init__() |
|
self.width = width |
|
self.layers = layers |
|
self.grad_checkpointing = False |
|
self.xattn = xattn |
|
|
|
self.resblocks = nn.ModuleList([ |
|
CustomResidualAttentionBlock( |
|
width, |
|
heads, |
|
mlp_ratio, |
|
ls_init_value=ls_init_value, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
scale_cosine_attn=scale_cosine_attn, |
|
scale_heads=scale_heads, |
|
scale_attn=scale_attn, |
|
scale_fc=scale_fc, |
|
cross_attn=cross_attn, |
|
xattn=xattn) |
|
for _ in range(layers) |
|
]) |
|
|
|
def get_cast_dtype(self) -> torch.dtype: |
|
return self.resblocks[0].mlp.c_fc.weight.dtype |
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None): |
|
if k is None and v is None: |
|
k = v = q |
|
for r in self.resblocks: |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
q = checkpoint(r, q, k, v, attn_mask) |
|
else: |
|
q = r(q, k, v, attn_mask=attn_mask) |
|
return q |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
d_model: int, |
|
n_head: int, |
|
mlp_ratio: float = 4.0, |
|
ls_init_value: float = None, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
xattn: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.ln_1 = norm_layer(d_model) |
|
if xattn: |
|
self.attn = Attention(d_model, n_head, xattn=True) |
|
else: |
|
self.attn = nn.MultiheadAttention(d_model, n_head) |
|
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() |
|
|
|
self.ln_2 = norm_layer(d_model) |
|
mlp_width = int(d_model * mlp_ratio) |
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, mlp_width)), |
|
("gelu", act_layer()), |
|
("c_proj", nn.Linear(mlp_width, d_model)) |
|
])) |
|
|
|
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() |
|
self.xattn = xattn |
|
|
|
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None |
|
if self.xattn: |
|
return self.attn(x, attn_mask=attn_mask) |
|
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] |
|
|
|
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask)) |
|
x = x + self.ls_2(self.mlp(self.ln_2(x))) |
|
return x |
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
mlp_ratio: float = 4.0, |
|
ls_init_value: float = None, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
xattn: bool = False, |
|
): |
|
super().__init__() |
|
self.width = width |
|
self.layers = layers |
|
self.grad_checkpointing = False |
|
|
|
self.resblocks = nn.ModuleList([ |
|
ResidualAttentionBlock( |
|
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn) |
|
for _ in range(layers) |
|
]) |
|
|
|
def get_cast_dtype(self) -> torch.dtype: |
|
return self.resblocks[0].mlp.c_fc.weight.dtype |
|
|
|
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): |
|
for r in self.resblocks: |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint(r, x, attn_mask) |
|
else: |
|
x = r(x, attn_mask=attn_mask) |
|
return x |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
image_size: int, |
|
patch_size: int, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
mlp_ratio: float, |
|
ls_init_value: float = None, |
|
patch_dropout: float = 0., |
|
global_average_pool: bool = False, |
|
output_dim: int = 512, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
xattn: bool = False, |
|
): |
|
super().__init__() |
|
self.image_size = to_2tuple(image_size) |
|
self.patch_size = to_2tuple(patch_size) |
|
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1]) |
|
self.output_dim = output_dim |
|
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) |
|
|
|
scale = width ** -0.5 |
|
self.class_embedding = nn.Parameter(scale * torch.randn(width)) |
|
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width)) |
|
|
|
|
|
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() |
|
self.ln_pre = norm_layer(width) |
|
|
|
self.transformer = Transformer( |
|
width, |
|
layers, |
|
heads, |
|
mlp_ratio, |
|
ls_init_value=ls_init_value, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
xattn=xattn |
|
) |
|
|
|
self.global_average_pool = global_average_pool |
|
self.ln_post = norm_layer(width) |
|
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) |
|
|
|
def lock(self, unlocked_groups=0, freeze_bn_stats=False): |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
if unlocked_groups != 0: |
|
groups = [ |
|
[ |
|
self.conv1, |
|
self.class_embedding, |
|
self.positional_embedding, |
|
self.ln_pre, |
|
], |
|
*self.transformer.resblocks[:-1], |
|
[ |
|
self.transformer.resblocks[-1], |
|
self.ln_post, |
|
], |
|
self.proj, |
|
] |
|
|
|
def _unlock(x): |
|
if isinstance(x, Sequence): |
|
for g in x: |
|
_unlock(g) |
|
else: |
|
if isinstance(x, torch.nn.Parameter): |
|
x.requires_grad = True |
|
else: |
|
for p in x.parameters(): |
|
p.requires_grad = True |
|
|
|
_unlock(groups[-unlocked_groups:]) |
|
|
|
def get_num_layers(self): |
|
return self.transformer.layers |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.transformer.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'positional_embedding', 'class_embedding'} |
|
|
|
def forward(self, x: torch.Tensor, return_all_features: bool=False): |
|
x = self.conv1(x) |
|
x = x.reshape(x.shape[0], x.shape[1], -1) |
|
x = x.permute(0, 2, 1) |
|
x = torch.cat( |
|
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), |
|
x], dim=1) |
|
x = x + self.positional_embedding.to(x.dtype) |
|
|
|
|
|
x = self.patch_dropout(x) |
|
x = self.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
|
|
if not return_all_features: |
|
if self.global_average_pool: |
|
x = x.mean(dim=1) |
|
else: |
|
x = x[:, 0] |
|
|
|
x = self.ln_post(x) |
|
|
|
if self.proj is not None: |
|
x = x @ self.proj |
|
|
|
return x |
|
|
|
|
|
class TextTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
context_length: int = 77, |
|
vocab_size: int = 49408, |
|
width: int = 512, |
|
heads: int = 8, |
|
layers: int = 12, |
|
ls_init_value: float = None, |
|
output_dim: int = 512, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
xattn: bool= False, |
|
attn_mask: bool = True |
|
): |
|
super().__init__() |
|
self.context_length = context_length |
|
self.vocab_size = vocab_size |
|
self.width = width |
|
self.output_dim = output_dim |
|
|
|
self.token_embedding = nn.Embedding(vocab_size, width) |
|
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width)) |
|
self.transformer = Transformer( |
|
width=width, |
|
layers=layers, |
|
heads=heads, |
|
ls_init_value=ls_init_value, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
xattn=xattn |
|
) |
|
|
|
self.xattn = xattn |
|
self.ln_final = norm_layer(width) |
|
self.text_projection = nn.Parameter(torch.empty(width, output_dim)) |
|
|
|
if attn_mask: |
|
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False) |
|
else: |
|
self.attn_mask = None |
|
|
|
self.init_parameters() |
|
|
|
def init_parameters(self): |
|
nn.init.normal_(self.token_embedding.weight, std=0.02) |
|
nn.init.normal_(self.positional_embedding, std=0.01) |
|
|
|
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) |
|
attn_std = self.transformer.width ** -0.5 |
|
fc_std = (2 * self.transformer.width) ** -0.5 |
|
for block in self.transformer.resblocks: |
|
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) |
|
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) |
|
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) |
|
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) |
|
|
|
if self.text_projection is not None: |
|
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.transformer.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
|
|
return {'positional_embedding'} |
|
|
|
def get_num_layers(self): |
|
return self.transformer.layers |
|
|
|
def build_attention_mask(self): |
|
|
|
|
|
mask = torch.empty(self.context_length, self.context_length) |
|
mask.fill_(float("-inf")) |
|
mask.triu_(1) |
|
return mask |
|
|
|
def forward(self, text, return_all_features: bool=False): |
|
cast_dtype = self.transformer.get_cast_dtype() |
|
x = self.token_embedding(text).to(cast_dtype) |
|
|
|
x = x + self.positional_embedding.to(cast_dtype) |
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x, attn_mask=self.attn_mask) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.ln_final(x) |
|
|
|
if not return_all_features: |
|
|
|
|
|
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection |
|
return x |
|
|