|
from typing import Optional, Sequence, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms.functional as F |
|
|
|
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \ |
|
CenterCrop |
|
|
|
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD |
|
|
|
|
|
class ResizeMaxSize(nn.Module): |
|
|
|
def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0): |
|
super().__init__() |
|
if not isinstance(max_size, int): |
|
raise TypeError(f"Size should be int. Got {type(max_size)}") |
|
self.max_size = max_size |
|
self.interpolation = interpolation |
|
self.fn = min if fn == 'min' else min |
|
self.fill = fill |
|
|
|
def forward(self, img): |
|
if isinstance(img, torch.Tensor): |
|
height, width = img.shape[:2] |
|
else: |
|
width, height = img.size |
|
scale = self.max_size / float(max(height, width)) |
|
if scale != 1.0: |
|
new_size = tuple(round(dim * scale) for dim in (height, width)) |
|
img = F.resize(img, new_size, self.interpolation) |
|
pad_h = self.max_size - new_size[0] |
|
pad_w = self.max_size - new_size[1] |
|
img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill) |
|
return img |
|
|
|
|
|
def _convert_to_rgb(image): |
|
return image.convert('RGB') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def image_transform( |
|
image_size: int, |
|
is_train: bool, |
|
mean: Optional[Tuple[float, ...]] = None, |
|
std: Optional[Tuple[float, ...]] = None, |
|
resize_longest_max: bool = False, |
|
fill_color: int = 0, |
|
): |
|
mean = mean or OPENAI_DATASET_MEAN |
|
if not isinstance(mean, (list, tuple)): |
|
mean = (mean,) * 3 |
|
|
|
std = std or OPENAI_DATASET_STD |
|
if not isinstance(std, (list, tuple)): |
|
std = (std,) * 3 |
|
|
|
if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]: |
|
|
|
image_size = image_size[0] |
|
|
|
normalize = Normalize(mean=mean, std=std) |
|
if is_train: |
|
return Compose([ |
|
RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC), |
|
_convert_to_rgb, |
|
ToTensor(), |
|
normalize, |
|
]) |
|
else: |
|
if resize_longest_max: |
|
transforms = [ |
|
ResizeMaxSize(image_size, fill=fill_color) |
|
] |
|
else: |
|
transforms = [ |
|
Resize(image_size, interpolation=InterpolationMode.BICUBIC), |
|
CenterCrop(image_size), |
|
] |
|
transforms.extend([ |
|
_convert_to_rgb, |
|
ToTensor(), |
|
normalize, |
|
]) |
|
return Compose(transforms) |
|
|