|
from math import pi |
|
import torch |
|
from torch import nn |
|
from einops import rearrange, repeat |
|
import logging |
|
|
|
def broadcat(tensors, dim = -1): |
|
num_tensors = len(tensors) |
|
shape_lens = set(list(map(lambda t: len(t.shape), tensors))) |
|
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions' |
|
shape_len = list(shape_lens)[0] |
|
dim = (dim + shape_len) if dim < 0 else dim |
|
dims = list(zip(*map(lambda t: list(t.shape), tensors))) |
|
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] |
|
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation' |
|
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) |
|
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) |
|
expanded_dims.insert(dim, (dim, dims[dim])) |
|
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) |
|
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) |
|
return torch.cat(tensors, dim = dim) |
|
|
|
def rotate_half(x): |
|
x = rearrange(x, '... (d r) -> ... d r', r = 2) |
|
x1, x2 = x.unbind(dim = -1) |
|
x = torch.stack((-x2, x1), dim = -1) |
|
return rearrange(x, '... d r -> ... (d r)') |
|
|
|
|
|
class VisionRotaryEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
pt_seq_len, |
|
ft_seq_len=None, |
|
custom_freqs = None, |
|
freqs_for = 'lang', |
|
theta = 10000, |
|
max_freq = 10, |
|
num_freqs = 1, |
|
): |
|
super().__init__() |
|
if custom_freqs: |
|
freqs = custom_freqs |
|
elif freqs_for == 'lang': |
|
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) |
|
elif freqs_for == 'pixel': |
|
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi |
|
elif freqs_for == 'constant': |
|
freqs = torch.ones(num_freqs).float() |
|
else: |
|
raise ValueError(f'unknown modality {freqs_for}') |
|
|
|
if ft_seq_len is None: ft_seq_len = pt_seq_len |
|
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len |
|
|
|
freqs_h = torch.einsum('..., f -> ... f', t, freqs) |
|
freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2) |
|
|
|
freqs_w = torch.einsum('..., f -> ... f', t, freqs) |
|
freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2) |
|
|
|
freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1) |
|
|
|
self.register_buffer("freqs_cos", freqs.cos()) |
|
self.register_buffer("freqs_sin", freqs.sin()) |
|
|
|
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}') |
|
|
|
def forward(self, t, start_index = 0): |
|
rot_dim = self.freqs_cos.shape[-1] |
|
end_index = start_index + rot_dim |
|
assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}' |
|
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:] |
|
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin) |
|
|
|
return torch.cat((t_left, t, t_right), dim = -1) |
|
|
|
class VisionRotaryEmbeddingFast(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
pt_seq_len, |
|
ft_seq_len=None, |
|
custom_freqs = None, |
|
freqs_for = 'lang', |
|
theta = 10000, |
|
max_freq = 10, |
|
num_freqs = 1, |
|
patch_dropout = 0. |
|
): |
|
super().__init__() |
|
if custom_freqs: |
|
freqs = custom_freqs |
|
elif freqs_for == 'lang': |
|
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) |
|
elif freqs_for == 'pixel': |
|
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi |
|
elif freqs_for == 'constant': |
|
freqs = torch.ones(num_freqs).float() |
|
else: |
|
raise ValueError(f'unknown modality {freqs_for}') |
|
|
|
if ft_seq_len is None: ft_seq_len = pt_seq_len |
|
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len |
|
|
|
freqs = torch.einsum('..., f -> ... f', t, freqs) |
|
freqs = repeat(freqs, '... n -> ... (n r)', r = 2) |
|
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1) |
|
|
|
freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) |
|
freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) |
|
|
|
self.patch_dropout = patch_dropout |
|
|
|
self.register_buffer("freqs_cos", freqs_cos) |
|
self.register_buffer("freqs_sin", freqs_sin) |
|
|
|
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}') |
|
|
|
def forward(self, t, patch_indices_keep=None): |
|
if patch_indices_keep is not None: |
|
batch = t.size()[0] |
|
batch_indices = torch.arange(batch) |
|
batch_indices = batch_indices[..., None] |
|
|
|
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]) |
|
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]) |
|
|
|
freqs_cos = freqs_cos[batch_indices, patch_indices_keep] |
|
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j') |
|
freqs_sin = freqs_sin[batch_indices, patch_indices_keep] |
|
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j') |
|
|
|
return t * freqs_cos + rotate_half(t) * freqs_sin |
|
|
|
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin |