|
import gc |
|
|
|
import cv2 |
|
import insightface |
|
import torch |
|
import torch.nn as nn |
|
from basicsr.utils import img2tensor, tensor2img |
|
from diffusers import ( |
|
DPMSolverMultistepScheduler, |
|
StableDiffusionXLPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from facexlib.parsing import init_parsing_model |
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper |
|
from huggingface_hub import hf_hub_download, snapshot_download |
|
from insightface.app import FaceAnalysis |
|
from safetensors.torch import load_file |
|
from torchvision.transforms import InterpolationMode |
|
from torchvision.transforms.functional import normalize, resize |
|
|
|
from eva_clip import create_model_and_transforms |
|
from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD |
|
from pulid.encoders import IDEncoder |
|
from pulid.utils import is_torch2_available |
|
|
|
if is_torch2_available(): |
|
from pulid.attention_processor import AttnProcessor2_0 as AttnProcessor |
|
from pulid.attention_processor import IDAttnProcessor2_0 as IDAttnProcessor |
|
else: |
|
from pulid.attention_processor import AttnProcessor, IDAttnProcessor |
|
|
|
|
|
class PuLIDPipeline: |
|
def __init__(self, *args, **kwargs): |
|
super().__init__() |
|
self.device = 'cuda' |
|
sdxl_base_repo = 'stabilityai/stable-diffusion-xl-base-1.0' |
|
sdxl_lightning_repo = 'ByteDance/SDXL-Lightning' |
|
self.sdxl_base_repo = sdxl_base_repo |
|
|
|
|
|
unet = UNet2DConditionModel.from_config(sdxl_base_repo, subfolder='unet').to(self.device, torch.float16) |
|
unet.load_state_dict( |
|
load_file( |
|
hf_hub_download(sdxl_lightning_repo, 'sdxl_lightning_4step_unet.safetensors'), device=self.device |
|
) |
|
) |
|
self.hack_unet_attn_layers(unet) |
|
self.pipe = StableDiffusionXLPipeline.from_pretrained( |
|
sdxl_base_repo, unet=unet, torch_dtype=torch.float16, variant="fp16" |
|
).to(self.device) |
|
self.pipe.watermark = None |
|
|
|
|
|
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config( |
|
self.pipe.scheduler.config, timestep_spacing="trailing" |
|
) |
|
|
|
|
|
self.id_adapter = IDEncoder().to(self.device) |
|
|
|
|
|
|
|
self.face_helper = FaceRestoreHelper( |
|
upscale_factor=1, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', |
|
save_ext='png', |
|
device=self.device, |
|
) |
|
self.face_helper.face_parse = None |
|
self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device) |
|
|
|
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True) |
|
model = model.visual |
|
self.clip_vision_model = model.to(self.device) |
|
eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN) |
|
eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD) |
|
if not isinstance(eva_transform_mean, (list, tuple)): |
|
eva_transform_mean = (eva_transform_mean,) * 3 |
|
if not isinstance(eva_transform_std, (list, tuple)): |
|
eva_transform_std = (eva_transform_std,) * 3 |
|
self.eva_transform_mean = eva_transform_mean |
|
self.eva_transform_std = eva_transform_std |
|
|
|
snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2') |
|
self.app = FaceAnalysis( |
|
name='antelopev2', root='.', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'] |
|
) |
|
self.app.prepare(ctx_id=0, det_size=(640, 640)) |
|
self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx') |
|
self.handler_ante.prepare(ctx_id=0) |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
self.load_pretrain() |
|
|
|
|
|
self.debug_img_list = [] |
|
|
|
def hack_unet_attn_layers(self, unet): |
|
id_adapter_attn_procs = {} |
|
for name, _ in unet.attn_processors.items(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is not None: |
|
id_adapter_attn_procs[name] = IDAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
).to(unet.device) |
|
else: |
|
id_adapter_attn_procs[name] = AttnProcessor() |
|
unet.set_attn_processor(id_adapter_attn_procs) |
|
self.id_adapter_attn_layers = nn.ModuleList(unet.attn_processors.values()) |
|
|
|
def load_pretrain(self): |
|
hf_hub_download('guozinan/PuLID', 'pulid_v1.bin', local_dir='models') |
|
ckpt_path = 'models/pulid_v1.bin' |
|
state_dict = torch.load(ckpt_path, map_location='cpu') |
|
state_dict_dict = {} |
|
for k, v in state_dict.items(): |
|
module = k.split('.')[0] |
|
state_dict_dict.setdefault(module, {}) |
|
new_k = k[len(module) + 1 :] |
|
state_dict_dict[module][new_k] = v |
|
|
|
for module in state_dict_dict: |
|
print(f'loading from {module}') |
|
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True) |
|
|
|
def to_gray(self, img): |
|
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] |
|
x = x.repeat(1, 3, 1, 1) |
|
return x |
|
|
|
def get_id_embedding(self, image): |
|
""" |
|
Args: |
|
image: numpy rgb image, range [0, 255] |
|
""" |
|
self.face_helper.clean_all() |
|
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) |
|
|
|
face_info = self.app.get(image_bgr) |
|
if len(face_info) > 0: |
|
face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * x['bbox'][3] - x['bbox'][1])[ |
|
-1 |
|
] |
|
id_ante_embedding = face_info['embedding'] |
|
self.debug_img_list.append( |
|
image[ |
|
int(face_info['bbox'][1]) : int(face_info['bbox'][3]), |
|
int(face_info['bbox'][0]) : int(face_info['bbox'][2]), |
|
] |
|
) |
|
else: |
|
id_ante_embedding = None |
|
|
|
|
|
self.face_helper.read_image(image_bgr) |
|
self.face_helper.get_face_landmarks_5(only_center_face=True) |
|
self.face_helper.align_warp_face() |
|
if len(self.face_helper.cropped_faces) == 0: |
|
raise RuntimeError('facexlib align face fail') |
|
align_face = self.face_helper.cropped_faces[0] |
|
|
|
if id_ante_embedding is None: |
|
print('fail to detect face using insightface, extract embedding on align face') |
|
id_ante_embedding = self.handler_ante.get_feat(align_face) |
|
|
|
id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device) |
|
if id_ante_embedding.ndim == 1: |
|
id_ante_embedding = id_ante_embedding.unsqueeze(0) |
|
|
|
|
|
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 |
|
input = input.to(self.device) |
|
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] |
|
parsing_out = parsing_out.argmax(dim=1, keepdim=True) |
|
bg_label = [0, 16, 18, 7, 8, 9, 14, 15] |
|
bg = sum(parsing_out == i for i in bg_label).bool() |
|
white_image = torch.ones_like(input) |
|
|
|
face_features_image = torch.where(bg, white_image, self.to_gray(input)) |
|
self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False)) |
|
|
|
|
|
face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC) |
|
face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std) |
|
id_cond_vit, id_vit_hidden = self.clip_vision_model( |
|
face_features_image, return_all_features=False, return_hidden=True, shuffle=False |
|
) |
|
id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) |
|
id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) |
|
|
|
id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) |
|
id_uncond = torch.zeros_like(id_cond) |
|
id_vit_hidden_uncond = [] |
|
for layer_idx in range(0, len(id_vit_hidden)): |
|
id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx])) |
|
|
|
id_embedding = self.id_adapter(id_cond, id_vit_hidden) |
|
uncond_id_embedding = self.id_adapter(id_uncond, id_vit_hidden_uncond) |
|
|
|
|
|
return torch.cat((uncond_id_embedding, id_embedding), dim=0) |
|
|
|
def inference(self, prompt, size, prompt_n='', image_embedding=None, id_scale=1.0, guidance_scale=1.2, steps=4): |
|
images = self.pipe( |
|
prompt=prompt, |
|
negative_prompt=prompt_n, |
|
num_images_per_prompt=size[0], |
|
height=size[1], |
|
width=size[2], |
|
num_inference_steps=steps, |
|
guidance_scale=guidance_scale, |
|
cross_attention_kwargs={'id_embedding': image_embedding, 'id_scale': id_scale}, |
|
).images |
|
|
|
return images |
|
|