|
import json |
|
import logging |
|
import os |
|
import pathlib |
|
import re |
|
from copy import deepcopy |
|
from pathlib import Path |
|
from typing import Optional, Tuple, Union, Dict, Any |
|
import torch |
|
|
|
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD |
|
from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\ |
|
get_cast_dtype |
|
from .openai import load_openai_model |
|
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model |
|
from .transform import image_transform |
|
from .tokenizer import HFTokenizer, tokenize |
|
from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed |
|
|
|
|
|
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] |
|
_MODEL_CONFIGS = {} |
|
|
|
|
|
def _natural_key(string_): |
|
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] |
|
|
|
|
|
def _rescan_model_configs(): |
|
global _MODEL_CONFIGS |
|
|
|
config_ext = ('.json',) |
|
config_files = [] |
|
for config_path in _MODEL_CONFIG_PATHS: |
|
if config_path.is_file() and config_path.suffix in config_ext: |
|
config_files.append(config_path) |
|
elif config_path.is_dir(): |
|
for ext in config_ext: |
|
config_files.extend(config_path.glob(f'*{ext}')) |
|
|
|
for cf in config_files: |
|
with open(cf, "r", encoding="utf8") as f: |
|
model_cfg = json.load(f) |
|
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): |
|
_MODEL_CONFIGS[cf.stem] = model_cfg |
|
|
|
_MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))) |
|
|
|
|
|
_rescan_model_configs() |
|
|
|
|
|
def list_models(): |
|
""" enumerate available model architectures based on config files """ |
|
return list(_MODEL_CONFIGS.keys()) |
|
|
|
|
|
def add_model_config(path): |
|
""" add model config path or file and update registry """ |
|
if not isinstance(path, Path): |
|
path = Path(path) |
|
_MODEL_CONFIG_PATHS.append(path) |
|
_rescan_model_configs() |
|
|
|
|
|
def get_model_config(model_name): |
|
if model_name in _MODEL_CONFIGS: |
|
return deepcopy(_MODEL_CONFIGS[model_name]) |
|
else: |
|
return None |
|
|
|
|
|
def get_tokenizer(model_name): |
|
config = get_model_config(model_name) |
|
tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize |
|
return tokenizer |
|
|
|
|
|
|
|
def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]): |
|
if is_openai: |
|
model = torch.jit.load(checkpoint_path, map_location="cpu").eval() |
|
state_dict = model.state_dict() |
|
for key in ["input_resolution", "context_length", "vocab_size"]: |
|
state_dict.pop(key, None) |
|
else: |
|
checkpoint = torch.load(checkpoint_path, map_location=map_location) |
|
for mk in model_key.split('|'): |
|
if isinstance(checkpoint, dict) and mk in checkpoint: |
|
state_dict = checkpoint[mk] |
|
break |
|
else: |
|
state_dict = checkpoint |
|
if next(iter(state_dict.items()))[0].startswith('module'): |
|
state_dict = {k[7:]: v for k, v in state_dict.items()} |
|
|
|
for k in skip_list: |
|
if k in list(state_dict.keys()): |
|
logging.info(f"Removing key {k} from pretrained checkpoint") |
|
del state_dict[k] |
|
|
|
if os.getenv('RoPE') == '1': |
|
for k in list(state_dict.keys()): |
|
if 'freqs_cos' in k or 'freqs_sin' in k: |
|
del state_dict[k] |
|
return state_dict |
|
|
|
|
|
|
|
def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True): |
|
state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False) |
|
|
|
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'): |
|
state_dict = convert_to_custom_text_state_dict(state_dict) |
|
if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'): |
|
state_dict['logit_scale'] = state_dict['text.logit_scale'] |
|
del state_dict['text.logit_scale'] |
|
|
|
|
|
if 'visual.positional_embedding' in state_dict: |
|
resize_clip_pos_embed(state_dict, model) |
|
|
|
elif 'visual.pos_embed' in state_dict: |
|
resize_evaclip_pos_embed(state_dict, model) |
|
|
|
|
|
incompatible_keys = model.load_state_dict(state_dict, strict=strict) |
|
logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}") |
|
return incompatible_keys |
|
|
|
def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): |
|
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) |
|
|
|
for k in list(state_dict.keys()): |
|
if not k.startswith('visual.'): |
|
del state_dict[k] |
|
for k in list(state_dict.keys()): |
|
if k.startswith('visual.'): |
|
new_k = k[7:] |
|
state_dict[new_k] = state_dict[k] |
|
del state_dict[k] |
|
return state_dict |
|
|
|
def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): |
|
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) |
|
|
|
for k in list(state_dict.keys()): |
|
if k.startswith('visual.'): |
|
del state_dict[k] |
|
return state_dict |
|
|
|
def get_pretrained_tag(pretrained_model): |
|
pretrained_model = pretrained_model.lower() |
|
if "laion" in pretrained_model or "open_clip" in pretrained_model: |
|
return "open_clip" |
|
elif "openai" in pretrained_model: |
|
return "clip" |
|
elif "eva" in pretrained_model and "clip" in pretrained_model: |
|
return "eva_clip" |
|
else: |
|
return "other" |
|
|
|
def load_pretrained_checkpoint( |
|
model, |
|
visual_checkpoint_path, |
|
text_checkpoint_path, |
|
strict=True, |
|
visual_model=None, |
|
text_model=None, |
|
model_key="model|module|state_dict", |
|
skip_list=[]): |
|
visual_tag = get_pretrained_tag(visual_model) |
|
text_tag = get_pretrained_tag(text_model) |
|
|
|
logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}") |
|
visual_incompatible_keys, text_incompatible_keys = None, None |
|
if visual_checkpoint_path: |
|
if visual_tag == "eva_clip" or visual_tag == "open_clip": |
|
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list) |
|
elif visual_tag == "clip": |
|
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list) |
|
else: |
|
visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) |
|
|
|
|
|
if 'positional_embedding' in visual_state_dict: |
|
resize_visual_pos_embed(visual_state_dict, model) |
|
|
|
elif 'pos_embed' in visual_state_dict: |
|
resize_eva_pos_embed(visual_state_dict, model) |
|
|
|
visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict) |
|
logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}") |
|
logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}") |
|
|
|
if text_checkpoint_path: |
|
if text_tag == "eva_clip" or text_tag == "open_clip": |
|
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list) |
|
elif text_tag == "clip": |
|
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list) |
|
else: |
|
text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) |
|
|
|
text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict) |
|
|
|
logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}") |
|
logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}") |
|
|
|
return visual_incompatible_keys, text_incompatible_keys |
|
|
|
def create_model( |
|
model_name: str, |
|
pretrained: Optional[str] = None, |
|
precision: str = 'fp32', |
|
device: Union[str, torch.device] = 'cpu', |
|
jit: bool = False, |
|
force_quick_gelu: bool = False, |
|
force_custom_clip: bool = False, |
|
force_patch_dropout: Optional[float] = None, |
|
pretrained_image: str = '', |
|
pretrained_text: str = '', |
|
pretrained_hf: bool = True, |
|
pretrained_visual_model: str = None, |
|
pretrained_text_model: str = None, |
|
cache_dir: Optional[str] = None, |
|
skip_list: list = [], |
|
): |
|
model_name = model_name.replace('/', '-') |
|
if isinstance(device, str): |
|
device = torch.device(device) |
|
|
|
if pretrained and pretrained.lower() == 'openai': |
|
logging.info(f'Loading pretrained {model_name} from OpenAI.') |
|
model = load_openai_model( |
|
model_name, |
|
precision=precision, |
|
device=device, |
|
jit=jit, |
|
cache_dir=cache_dir, |
|
) |
|
else: |
|
model_cfg = get_model_config(model_name) |
|
if model_cfg is not None: |
|
logging.info(f'Loaded {model_name} model config.') |
|
else: |
|
logging.error(f'Model config for {model_name} not found; available models {list_models()}.') |
|
raise RuntimeError(f'Model config for {model_name} not found.') |
|
|
|
if 'rope' in model_cfg.get('vision_cfg', {}): |
|
if model_cfg['vision_cfg']['rope']: |
|
os.environ['RoPE'] = "1" |
|
else: |
|
os.environ['RoPE'] = "0" |
|
|
|
if force_quick_gelu: |
|
|
|
model_cfg["quick_gelu"] = True |
|
|
|
if force_patch_dropout is not None: |
|
|
|
model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout |
|
|
|
cast_dtype = get_cast_dtype(precision) |
|
custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg']) |
|
|
|
|
|
if custom_clip: |
|
if 'hf_model_name' in model_cfg.get('text_cfg', {}): |
|
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf |
|
model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype) |
|
else: |
|
model = CLIP(**model_cfg, cast_dtype=cast_dtype) |
|
|
|
pretrained_cfg = {} |
|
if pretrained: |
|
checkpoint_path = '' |
|
pretrained_cfg = get_pretrained_cfg(model_name, pretrained) |
|
if pretrained_cfg: |
|
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) |
|
elif os.path.exists(pretrained): |
|
checkpoint_path = pretrained |
|
|
|
if checkpoint_path: |
|
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') |
|
load_checkpoint(model, |
|
checkpoint_path, |
|
model_key="model|module|state_dict", |
|
strict=False |
|
) |
|
else: |
|
error_str = ( |
|
f'Pretrained weights ({pretrained}) not found for model {model_name}.' |
|
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.') |
|
logging.warning(error_str) |
|
raise RuntimeError(error_str) |
|
else: |
|
visual_checkpoint_path = '' |
|
text_checkpoint_path = '' |
|
|
|
if pretrained_image: |
|
pretrained_visual_model = pretrained_visual_model.replace('/', '-') |
|
pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image) |
|
if 'timm_model_name' in model_cfg.get('vision_cfg', {}): |
|
|
|
model_cfg['vision_cfg']['timm_model_pretrained'] = True |
|
elif pretrained_image_cfg: |
|
visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir) |
|
elif os.path.exists(pretrained_image): |
|
visual_checkpoint_path = pretrained_image |
|
else: |
|
logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') |
|
raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') |
|
|
|
if pretrained_text: |
|
pretrained_text_model = pretrained_text_model.replace('/', '-') |
|
pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text) |
|
if pretrained_image_cfg: |
|
text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir) |
|
elif os.path.exists(pretrained_text): |
|
text_checkpoint_path = pretrained_text |
|
else: |
|
logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') |
|
raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') |
|
|
|
if visual_checkpoint_path: |
|
logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).') |
|
if text_checkpoint_path: |
|
logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).') |
|
|
|
if visual_checkpoint_path or text_checkpoint_path: |
|
load_pretrained_checkpoint( |
|
model, |
|
visual_checkpoint_path, |
|
text_checkpoint_path, |
|
strict=False, |
|
visual_model=pretrained_visual_model, |
|
text_model=pretrained_text_model, |
|
model_key="model|module|state_dict", |
|
skip_list=skip_list |
|
) |
|
|
|
if "fp16" in precision or "bf16" in precision: |
|
logging.info(f'convert precision to {precision}') |
|
model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16) |
|
|
|
model.to(device=device) |
|
|
|
|
|
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN |
|
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD |
|
|
|
if jit: |
|
model = torch.jit.script(model) |
|
|
|
return model |
|
|
|
|
|
def create_model_and_transforms( |
|
model_name: str, |
|
pretrained: Optional[str] = None, |
|
precision: str = 'fp32', |
|
device: Union[str, torch.device] = 'cpu', |
|
jit: bool = False, |
|
force_quick_gelu: bool = False, |
|
force_custom_clip: bool = False, |
|
force_patch_dropout: Optional[float] = None, |
|
pretrained_image: str = '', |
|
pretrained_text: str = '', |
|
pretrained_hf: bool = True, |
|
pretrained_visual_model: str = None, |
|
pretrained_text_model: str = None, |
|
image_mean: Optional[Tuple[float, ...]] = None, |
|
image_std: Optional[Tuple[float, ...]] = None, |
|
cache_dir: Optional[str] = None, |
|
skip_list: list = [], |
|
): |
|
model = create_model( |
|
model_name, |
|
pretrained, |
|
precision=precision, |
|
device=device, |
|
jit=jit, |
|
force_quick_gelu=force_quick_gelu, |
|
force_custom_clip=force_custom_clip, |
|
force_patch_dropout=force_patch_dropout, |
|
pretrained_image=pretrained_image, |
|
pretrained_text=pretrained_text, |
|
pretrained_hf=pretrained_hf, |
|
pretrained_visual_model=pretrained_visual_model, |
|
pretrained_text_model=pretrained_text_model, |
|
cache_dir=cache_dir, |
|
skip_list=skip_list, |
|
) |
|
|
|
image_mean = image_mean or getattr(model.visual, 'image_mean', None) |
|
image_std = image_std or getattr(model.visual, 'image_std', None) |
|
preprocess_train = image_transform( |
|
model.visual.image_size, |
|
is_train=True, |
|
mean=image_mean, |
|
std=image_std |
|
) |
|
preprocess_val = image_transform( |
|
model.visual.image_size, |
|
is_train=False, |
|
mean=image_mean, |
|
std=image_std |
|
) |
|
|
|
return model, preprocess_train, preprocess_val |
|
|
|
|
|
def create_transforms( |
|
model_name: str, |
|
pretrained: Optional[str] = None, |
|
precision: str = 'fp32', |
|
device: Union[str, torch.device] = 'cpu', |
|
jit: bool = False, |
|
force_quick_gelu: bool = False, |
|
force_custom_clip: bool = False, |
|
force_patch_dropout: Optional[float] = None, |
|
pretrained_image: str = '', |
|
pretrained_text: str = '', |
|
pretrained_hf: bool = True, |
|
pretrained_visual_model: str = None, |
|
pretrained_text_model: str = None, |
|
image_mean: Optional[Tuple[float, ...]] = None, |
|
image_std: Optional[Tuple[float, ...]] = None, |
|
cache_dir: Optional[str] = None, |
|
skip_list: list = [], |
|
): |
|
model = create_model( |
|
model_name, |
|
pretrained, |
|
precision=precision, |
|
device=device, |
|
jit=jit, |
|
force_quick_gelu=force_quick_gelu, |
|
force_custom_clip=force_custom_clip, |
|
force_patch_dropout=force_patch_dropout, |
|
pretrained_image=pretrained_image, |
|
pretrained_text=pretrained_text, |
|
pretrained_hf=pretrained_hf, |
|
pretrained_visual_model=pretrained_visual_model, |
|
pretrained_text_model=pretrained_text_model, |
|
cache_dir=cache_dir, |
|
skip_list=skip_list, |
|
) |
|
|
|
|
|
image_mean = image_mean or getattr(model.visual, 'image_mean', None) |
|
image_std = image_std or getattr(model.visual, 'image_std', None) |
|
preprocess_train = image_transform( |
|
model.visual.image_size, |
|
is_train=True, |
|
mean=image_mean, |
|
std=image_std |
|
) |
|
preprocess_val = image_transform( |
|
model.visual.image_size, |
|
is_train=False, |
|
mean=image_mean, |
|
std=image_std |
|
) |
|
del model |
|
|
|
return preprocess_train, preprocess_val |
|
|
|
def create_model_from_pretrained( |
|
model_name: str, |
|
pretrained: str, |
|
precision: str = 'fp32', |
|
device: Union[str, torch.device] = 'cpu', |
|
jit: bool = False, |
|
force_quick_gelu: bool = False, |
|
force_custom_clip: bool = False, |
|
force_patch_dropout: Optional[float] = None, |
|
return_transform: bool = True, |
|
image_mean: Optional[Tuple[float, ...]] = None, |
|
image_std: Optional[Tuple[float, ...]] = None, |
|
cache_dir: Optional[str] = None, |
|
is_frozen: bool = False, |
|
): |
|
if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained): |
|
raise RuntimeError( |
|
f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.' |
|
f' Use open_clip.list_pretrained() to find one.') |
|
|
|
model = create_model( |
|
model_name, |
|
pretrained, |
|
precision=precision, |
|
device=device, |
|
jit=jit, |
|
force_quick_gelu=force_quick_gelu, |
|
force_custom_clip=force_custom_clip, |
|
force_patch_dropout=force_patch_dropout, |
|
cache_dir=cache_dir, |
|
) |
|
|
|
if is_frozen: |
|
for param in model.parameters(): |
|
param.requires_grad = False |
|
|
|
if not return_transform: |
|
return model |
|
|
|
image_mean = image_mean or getattr(model.visual, 'image_mean', None) |
|
image_std = image_std or getattr(model.visual, 'image_std', None) |
|
preprocess = image_transform( |
|
model.visual.image_size, |
|
is_train=False, |
|
mean=image_mean, |
|
std=image_std |
|
) |
|
|
|
return model, preprocess |
|
|