Spaces:
Runtime error
Runtime error
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
+
from langchain_openai import OpenAIEmbeddings
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
6 |
+
from langchain_core.prompts import ChatPromptTemplate
|
7 |
+
from langchain.chains import create_retrieval_chain
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
10 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
#download embedding model
|
15 |
+
def download_hugging_face_embeddings():
|
16 |
+
embeddings= HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
17 |
+
return embeddings
|
18 |
+
# Load the GROQ and OpenAI API keys
|
19 |
+
#os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")
|
20 |
+
groq_api_key = ('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')
|
21 |
+
|
22 |
+
# Initialize the LLM
|
23 |
+
llm = ChatGroq(groq_api_key=groq_api_key,
|
24 |
+
model_name="Llama3-8b-8192")
|
25 |
+
|
26 |
+
from langchain_core.prompts import ChatPromptTemplate
|
27 |
+
|
28 |
+
prompt_template = """Use the following pieces of information to answer the user's question.
|
29 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
30 |
+
Context: {context}
|
31 |
+
Question: {input}
|
32 |
+
Only return the helpful answer below and nothing else.
|
33 |
+
Helpful answer:"""
|
34 |
+
|
35 |
+
prompt = ChatPromptTemplate.from_template(prompt_template)
|
36 |
+
def vector_embedding():
|
37 |
+
"""Embeds the documents and stores them in a FAISS vector store."""
|
38 |
+
|
39 |
+
#embeddings = OpenAIEmbeddings()
|
40 |
+
embeddings= HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
41 |
+
loader = PyPDFDirectoryLoader("/kaggle/input/book-pdf-1") # Data Ingestion
|
42 |
+
docs = loader.load() # Document Loading
|
43 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Chunk Creation
|
44 |
+
final_documents = text_splitter.split_documents(docs[:20]) # Splitting
|
45 |
+
vectors = FAISS.from_documents(final_documents, embeddings) # Vector OpenAI embeddings
|
46 |
+
return vectors
|
47 |
+
|
48 |
+
# Get user input
|
49 |
+
prompt1 = input("Enter Your Question From Documents: ")
|
50 |
+
|
51 |
+
# Embed the documents
|
52 |
+
vectors = vector_embedding()
|
53 |
+
print("Vector Store DB Is Ready")
|
54 |
+
|
55 |
+
import time
|
56 |
+
|
57 |
+
if prompt1:
|
58 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
59 |
+
retriever = vectors.as_retriever()
|
60 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
61 |
+
start = time.process_time()
|
62 |
+
response = retrieval_chain.invoke({'input': prompt1})
|
63 |
+
print("Response time :", time.process_time() - start)
|
64 |
+
print(response['answer'])
|
65 |
+
|
66 |
+
# Print similar documents
|
67 |
+
print("\nDocument Similarity Search:")
|
68 |
+
for i, doc in enumerate(response["context"]):
|
69 |
+
print(doc.page_content)
|
70 |
+
print("--------------------------------")
|