3v324v23 commited on
Commit
93e2662
1 Parent(s): ff9da79
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .buddy/docker-build.fixed.yml +6 -0
  2. .circleci/config.yml +37 -0
  3. .flake8 +3 -0
  4. .gitattributes +6 -0
  5. .gitattributes.bak +3 -0
  6. .github/ISSUE_TEMPLATE/bug_report.md +37 -0
  7. .github/workflows/stale.yml +29 -0
  8. .gitignore +15 -0
  9. LICENSE +661 -0
  10. README.md +156 -0
  11. clip/__init__.py +1 -0
  12. clip/bpe_simple_vocab_16e6.txt.gz +3 -0
  13. clip/clip.py +241 -0
  14. clip/clipseg.py +538 -0
  15. clip/model.py +436 -0
  16. clip/simple_tokenizer.py +132 -0
  17. clip/vitseg.py +286 -0
  18. config_colab.yaml +14 -0
  19. docs/screenshot.png +3 -0
  20. installer/installer.py +87 -0
  21. installer/windows_run.bat +99 -0
  22. mypy.ini +7 -0
  23. requirements.txt +19 -0
  24. roop-unleashed.ipynb +208 -0
  25. roop/FaceSet.py +20 -0
  26. roop/ProcessEntry.py +7 -0
  27. roop/ProcessMgr.py +702 -0
  28. roop/ProcessOptions.py +13 -0
  29. roop/__init__.py +0 -0
  30. roop/capturer.py +30 -0
  31. roop/core.py +378 -0
  32. roop/face_util.py +306 -0
  33. roop/ffmpeg_writer.py +218 -0
  34. roop/globals.py +53 -0
  35. roop/metadata.py +2 -0
  36. roop/processors/Enhance_CodeFormer.py +75 -0
  37. roop/processors/Enhance_DMDNet.py +898 -0
  38. roop/processors/Enhance_GFPGAN.py +77 -0
  39. roop/processors/Enhance_GPEN.py +63 -0
  40. roop/processors/Enhance_RestoreFormerPPlus.py +64 -0
  41. roop/processors/FaceSwapInsightFace.py +69 -0
  42. roop/processors/Frame_Colorizer.py +70 -0
  43. roop/processors/Frame_Filter.py +105 -0
  44. roop/processors/Frame_Masking.py +71 -0
  45. roop/processors/Frame_Upscale.py +131 -0
  46. roop/processors/Mask_Clip2Seg.py +94 -0
  47. roop/processors/Mask_XSeg.py +60 -0
  48. roop/processors/__init__.py +0 -0
  49. roop/template_parser.py +23 -0
  50. roop/typing.py +9 -0
.buddy/docker-build.fixed.yml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ - pipeline: "docker-build"
2
+ events:
3
+ - type: "PUSH"
4
+ refs:
5
+ - "refs/heads/main"
6
+ fail_on_prepare_env_warning: true
.circleci/config.yml ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This config was automatically generated from your source code
2
+ # Stacks detected: cicd:github-actions:.github/workflows,deps:python:.
3
+ version: 2.1
4
+ orbs:
5
+ python: circleci/python@2
6
+ jobs:
7
+ test-python:
8
+ # Install dependencies and run tests
9
+ docker:
10
+ - image: cimg/python:3.8-node
11
+ steps:
12
+ - checkout
13
+ - python/install-packages
14
+ - run:
15
+ name: Run tests
16
+ command: pytest --junitxml=junit.xml || ((($? == 5)) && echo 'Did not find any tests to run.')
17
+ - store_test_results:
18
+ path: junit.xml
19
+ deploy:
20
+ # This is an example deploy job, not actually used by the workflow
21
+ docker:
22
+ - image: cimg/base:stable
23
+ steps:
24
+ # Replace this with steps to deploy to users
25
+ - run:
26
+ name: deploy
27
+ command: '#e.g. ./deploy.sh'
28
+ - run:
29
+ name: found github actions config
30
+ command: ':'
31
+ workflows:
32
+ build-and-test:
33
+ jobs:
34
+ - test-python
35
+ # - deploy:
36
+ # requires:
37
+ # - test-python
.flake8 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [flake8]
2
+ select = E3, E4, F
3
+ per-file-ignores = roop/core.py:E402
.gitattributes ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ .github/examples/snapshot.mp4 filter=lfs diff=lfs merge=lfs -text
2
+ examples/snapshot.mp4 filter=lfs diff=lfs merge=lfs -text
3
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
4
+ *.gz filter=lfs diff=lfs merge=lfs -text
5
+ *.png filter=lfs diff=lfs merge=lfs -text
6
+
.gitattributes.bak ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ .github/examples/snapshot.mp4 filter=lfs diff=lfs merge=lfs -text
2
+ examples/snapshot.mp4 filter=lfs diff=lfs merge=lfs -text
3
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
.github/ISSUE_TEMPLATE/bug_report.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: Bug report
3
+ about: Create a report to help us improve
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ **Describe the bug**
11
+ A clear and concise description of what the bug is.
12
+
13
+ **To Reproduce**
14
+ Steps to reproduce the behavior:
15
+ 1. Go to '...'
16
+ 2. Click on '....'
17
+ 3. Scroll down to '....'
18
+ 4. See error
19
+
20
+ **Details**
21
+ What OS are you using?
22
+ - [ ] Linux
23
+ - [ ] Linux in WSL
24
+ - [ ] Windows
25
+ - [ ] Mac
26
+
27
+ Are you using a GPU?
28
+ - [ ] No. CPU FTW
29
+ - [ ] NVIDIA
30
+ - [ ] AMD
31
+ - [ ] Intel
32
+ - [ ] Mac
33
+
34
+ **Which version of roop unleashed are you using?**
35
+
36
+ **Screenshots**
37
+ If applicable, add screenshots to help explain your problem.
.github/workflows/stale.yml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This workflow warns and then closes issues and PRs that have had no activity for a specified amount of time.
2
+ #
3
+ # You can adjust the behavior by modifying this file.
4
+ # For more information, see:
5
+ # https://github.com/actions/stale
6
+ name: Mark stale issues and pull requests
7
+
8
+ on:
9
+ schedule:
10
+ - cron: '32 0 * * *'
11
+
12
+ jobs:
13
+ stale:
14
+
15
+ runs-on: ubuntu-latest
16
+ permissions:
17
+ issues: write
18
+ pull-requests: write
19
+
20
+ steps:
21
+ - uses: actions/stale@v5
22
+ with:
23
+ repo-token: ${{ secrets.GITHUB_TOKEN }}
24
+ stale-issue-message: 'This issue is stale because it has been open 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.'
25
+ stale-pr-message: 'This PR is stale because it has been open 45 days with no activity. Remove stale label or comment or this will be closed in 10 days.'
26
+ close-issue-message: 'This issue was closed because it has been stalled for 5 days with no activity.'
27
+ days-before-stale: 30
28
+ days-before-close: 5
29
+ days-before-pr-close: -1
.gitignore ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .vs
2
+ .idea
3
+ models
4
+ temp
5
+ __pycache__
6
+ *.pth
7
+ /start.bat
8
+ /env
9
+ .vscode
10
+ output
11
+ temp
12
+ config.yaml
13
+ run.bat
14
+ venv
15
+ start.sh
LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published
637
+ by the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # roop-unleashed
2
+
3
+ [Changelog](#changelog) • [Usage](#usage) • [Wiki](https://github.com/C0untFloyd/roop-unleashed/wiki)
4
+
5
+
6
+ Uncensored Deepfakes for images and videos without training and an easy-to-use GUI.
7
+
8
+
9
+ ![Screen](https://github.com/C0untFloyd/roop-unleashed/assets/131583554/6ee6860d-efbe-4337-8c62-a67598863637)
10
+
11
+ ### Features
12
+
13
+ - Platform-independant Browser GUI
14
+ - Selection of multiple input/output faces in one go
15
+ - Many different swapping modes, first detected, face selections, by gender
16
+ - Batch processing of images/videos
17
+ - Masking of face occluders using text prompts or automatically
18
+ - Optional Face Upscaler/Restoration using different enhancers
19
+ - Preview swapping from different video frames
20
+ - Live Fake Cam using your webcam
21
+ - Extras Tab for cutting videos etc.
22
+ - Settings - storing configuration for next session
23
+ - Theme Support
24
+
25
+ and lots more...
26
+
27
+
28
+ ## Disclaimer
29
+
30
+ This project is for technical and academic use only.
31
+ Users of this software are expected to use this software responsibly while abiding the local law. If a face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. Developers of this software will not be responsible for actions of end-users.
32
+ **Please do not apply it to illegal and unethical scenarios.**
33
+
34
+ In the event of violation of the legal and ethical requirements of the user's country or region, this code repository is exempt from liability
35
+
36
+ ### Installation
37
+
38
+ Please refer to the [wiki](https://github.com/C0untFloyd/roop-unleashed/wiki).
39
+
40
+
41
+
42
+
43
+ ### Usage
44
+
45
+ - Windows: run the `windows_run.bat` from the Installer.
46
+ - Linux: `python run.py`
47
+
48
+ <a target="_blank" href="https://colab.research.google.com/github/C0untFloyd/roop-unleashed/blob/main/roop-unleashed.ipynb">
49
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
50
+ </a>
51
+
52
+
53
+ Additional commandline arguments are currently unsupported and settings should be done via the UI.
54
+
55
+ > Note: When you run this program for the first time, it will download some models roughly ~2Gb in size.
56
+
57
+
58
+
59
+
60
+ ### Changelog
61
+
62
+ **22.04.2024** v3.9.0
63
+
64
+ - Bugfix: Face detection bounding box corrupt values at weird angles
65
+ - Rewrote mask previewing to work with every model
66
+ - Switching mask engines toggles text interactivity
67
+ - Clearing target files, resets face selection dropdown
68
+ - Massive rewrite of swapping architecture, needed for xseg implementation
69
+ - Added DFL Xseg Support for partial face occlusion
70
+ - Face masking only runs when there is a face detected
71
+ - Removed unnecessary toggle checkbox for text masking
72
+
73
+
74
+ **22.03.2024** v3.6.5
75
+
76
+ - Bugfix: Installer pulling latest update on first installation
77
+ - Bugfix: Regression issue, blurring/erosion missing from face swap
78
+ - Exposed erosion and blur amounts to UI
79
+ - Using same values for manual masking too
80
+
81
+
82
+ **20.03.2024** v3.6.3
83
+
84
+ - Bugfix: Workaround for Gradio Slider Change Bug
85
+ - Bugfix: CSS Styling to fix Gradio Image Height Bug
86
+ - Made face swapping mask offsets resolution independant
87
+ - Show offset mask as overlay
88
+ - Changed layout for masking
89
+
90
+
91
+ **18.03.2024** v3.6.0
92
+
93
+ - Updated to Gradio 4.21.0 - requiring many changes under the hood
94
+ - New manual masking (draw the mask yourself)
95
+ - Extras Tab, streamlined cutting/joining videos
96
+ - Re-added face selection by gender (on-demand loading, default turned off)
97
+ - Removed unnecessary activate live-cam option
98
+ - Added time info to preview frame and changed frame slider event to allow faster changes
99
+
100
+
101
+ **10.03.2024** v3.5.5
102
+
103
+ - Bugfix: Installer Path Env
104
+ - Bugfix: file attributes
105
+ - Video processing checks for presence of ffmpeg and displays warning if not found
106
+ - Removed gender + age detection to speed up processing. Option removed from UI
107
+ - Replaced restoreformer with restoreformer++
108
+ - Live Cam recoded to run separate from virtual cam and without blocking controls
109
+ - Swapping with only 1 target face allows selecting from several input faces
110
+
111
+
112
+
113
+ **08.01.2024** v3.5.0
114
+
115
+ - Bugfix: wrong access options when creating folders
116
+ - New auto rotation of horizontal faces, fixing bad landmark positions (expanded on ![PR 364](https://github.com/C0untFloyd/roop-unleashed/pull/364))
117
+ - Simple VR Option for stereo Images/Movies, best used in selected face mode
118
+ - Added RestoreFormer Enhancer - https://github.com/wzhouxiff/RestoreFormer
119
+ - Bumped up package versions for onnx/Torch etc.
120
+
121
+
122
+ **16.10.2023** v3.3.4
123
+
124
+ **11.8.2023** v2.7.0
125
+
126
+ Initial Gradio Version - old TkInter Version now deprecated
127
+
128
+ - Re-added unified padding to face enhancers
129
+ - Fixed DMDNet for all resolutions
130
+ - Selecting target face now automatically switches swapping mode to selected
131
+ - GPU providers are correctly set using the GUI (needs restart currently)
132
+ - Local output folder can be opened from page
133
+ - Unfinished extras functions disabled for now
134
+ - Installer checks out specific commit, allowing to go back to first install
135
+ - Updated readme for new gradio version
136
+ - Updated Colab
137
+
138
+
139
+ # Acknowledgements
140
+
141
+ Lots of ideas, code or pre-trained models borrowed from the following projects:
142
+
143
+ https://github.com/deepinsight/insightface<br />
144
+ https://github.com/s0md3v/roop<br />
145
+ https://github.com/AUTOMATIC1111/stable-diffusion-webui<br />
146
+ https://github.com/Hillobar/Rope<br />
147
+ https://github.com/TencentARC/GFPGAN<br />
148
+ https://github.com/kadirnar/codeformer-pip<br />
149
+ https://github.com/csxmli2016/DMDNet<br />
150
+ https://github.com/glucauze/sd-webui-faceswaplab<br />
151
+ https://github.com/ykk648/face_power<br />
152
+
153
+ <br />
154
+ <br />
155
+ Thanks to all developers!
156
+
clip/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .clip import *
clip/bpe_simple_vocab_16e6.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
3
+ size 1356917
clip/clip.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import os
3
+ import urllib
4
+ import warnings
5
+ from typing import Any, Union, List
6
+
7
+ import torch
8
+ from PIL import Image
9
+ from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
10
+ from tqdm import tqdm
11
+
12
+ from .model import build_model
13
+ from .simple_tokenizer import SimpleTokenizer as _Tokenizer
14
+
15
+ try:
16
+ from torchvision.transforms import InterpolationMode
17
+ BICUBIC = InterpolationMode.BICUBIC
18
+ except ImportError:
19
+ BICUBIC = Image.BICUBIC
20
+
21
+
22
+
23
+ __all__ = ["available_models", "load", "tokenize"]
24
+ _tokenizer = _Tokenizer()
25
+
26
+ _MODELS = {
27
+ "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
28
+ "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
29
+ "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
30
+ "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
31
+ "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
32
+ "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
33
+ "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
34
+ "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
35
+ "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
36
+ }
37
+
38
+
39
+ def _download(url: str, root: str):
40
+ os.makedirs(root, exist_ok=True)
41
+ filename = os.path.basename(url)
42
+
43
+ expected_sha256 = url.split("/")[-2]
44
+ download_target = os.path.join(root, filename)
45
+
46
+ if os.path.exists(download_target) and not os.path.isfile(download_target):
47
+ raise RuntimeError(f"{download_target} exists and is not a regular file")
48
+
49
+ if os.path.isfile(download_target):
50
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
51
+ return download_target
52
+ else:
53
+ warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
54
+
55
+ with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
56
+ with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
57
+ while True:
58
+ buffer = source.read(8192)
59
+ if not buffer:
60
+ break
61
+
62
+ output.write(buffer)
63
+ loop.update(len(buffer))
64
+
65
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
66
+ raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
67
+
68
+ return download_target
69
+
70
+
71
+ def _convert_image_to_rgb(image):
72
+ return image.convert("RGB")
73
+
74
+
75
+ def _transform(n_px):
76
+ return Compose([
77
+ Resize(n_px, interpolation=BICUBIC),
78
+ CenterCrop(n_px),
79
+ _convert_image_to_rgb,
80
+ ToTensor(),
81
+ Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
82
+ ])
83
+
84
+
85
+ def available_models() -> List[str]:
86
+ """Returns the names of available CLIP models"""
87
+ return list(_MODELS.keys())
88
+
89
+
90
+ def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
91
+ """Load a CLIP model
92
+
93
+ Parameters
94
+ ----------
95
+ name : str
96
+ A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
97
+
98
+ device : Union[str, torch.device]
99
+ The device to put the loaded model
100
+
101
+ jit : bool
102
+ Whether to load the optimized JIT model or more hackable non-JIT model (default).
103
+
104
+ download_root: str
105
+ path to download the model files; by default, it uses "~/.cache/clip"
106
+
107
+ Returns
108
+ -------
109
+ model : torch.nn.Module
110
+ The CLIP model
111
+
112
+ preprocess : Callable[[PIL.Image], torch.Tensor]
113
+ A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
114
+ """
115
+ if name in _MODELS:
116
+ model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
117
+ elif os.path.isfile(name):
118
+ model_path = name
119
+ else:
120
+ raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
121
+
122
+ with open(model_path, 'rb') as opened_file:
123
+ try:
124
+ # loading JIT archive
125
+ model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
126
+ state_dict = None
127
+ except RuntimeError:
128
+ # loading saved state dict
129
+ if jit:
130
+ warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
131
+ jit = False
132
+ state_dict = torch.load(opened_file, map_location="cpu")
133
+
134
+ if not jit:
135
+ model = build_model(state_dict or model.state_dict()).to(device)
136
+ if str(device) == "cpu":
137
+ model.float()
138
+ return model, _transform(model.visual.input_resolution)
139
+
140
+ # patch the device names
141
+ device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
142
+ device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
143
+
144
+ def _node_get(node: torch._C.Node, key: str):
145
+ """Gets attributes of a node which is polymorphic over return type.
146
+
147
+ From https://github.com/pytorch/pytorch/pull/82628
148
+ """
149
+ sel = node.kindOf(key)
150
+ return getattr(node, sel)(key)
151
+
152
+ def patch_device(module):
153
+ try:
154
+ graphs = [module.graph] if hasattr(module, "graph") else []
155
+ except RuntimeError:
156
+ graphs = []
157
+
158
+ if hasattr(module, "forward1"):
159
+ graphs.append(module.forward1.graph)
160
+
161
+ for graph in graphs:
162
+ for node in graph.findAllNodes("prim::Constant"):
163
+ if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"):
164
+ node.copyAttributes(device_node)
165
+
166
+ model.apply(patch_device)
167
+ patch_device(model.encode_image)
168
+ patch_device(model.encode_text)
169
+
170
+ # patch dtype to float32 on CPU
171
+ if str(device) == "cpu":
172
+ float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
173
+ float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
174
+ float_node = float_input.node()
175
+
176
+ def patch_float(module):
177
+ try:
178
+ graphs = [module.graph] if hasattr(module, "graph") else []
179
+ except RuntimeError:
180
+ graphs = []
181
+
182
+ if hasattr(module, "forward1"):
183
+ graphs.append(module.forward1.graph)
184
+
185
+ for graph in graphs:
186
+ for node in graph.findAllNodes("aten::to"):
187
+ inputs = list(node.inputs())
188
+ for i in [1, 2]: # dtype can be the second or third argument to aten::to()
189
+ if _node_get(inputs[i].node(), "value") == 5:
190
+ inputs[i].node().copyAttributes(float_node)
191
+
192
+ model.apply(patch_float)
193
+ patch_float(model.encode_image)
194
+ patch_float(model.encode_text)
195
+
196
+ model.float()
197
+
198
+ return model, _transform(model.input_resolution.item())
199
+
200
+
201
+ def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
202
+ """
203
+ Returns the tokenized representation of given input string(s)
204
+
205
+ Parameters
206
+ ----------
207
+ texts : Union[str, List[str]]
208
+ An input string or a list of input strings to tokenize
209
+
210
+ context_length : int
211
+ The context length to use; all CLIP models use 77 as the context length
212
+
213
+ truncate: bool
214
+ Whether to truncate the text in case its encoding is longer than the context length
215
+
216
+ Returns
217
+ -------
218
+ A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
219
+ We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
220
+ """
221
+ if isinstance(texts, str):
222
+ texts = [texts]
223
+
224
+ sot_token = _tokenizer.encoder["<|startoftext|>"]
225
+ eot_token = _tokenizer.encoder["<|endoftext|>"]
226
+ all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
227
+ #if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
228
+ # result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
229
+ #else:
230
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
231
+
232
+ for i, tokens in enumerate(all_tokens):
233
+ if len(tokens) > context_length:
234
+ if truncate:
235
+ tokens = tokens[:context_length]
236
+ tokens[-1] = eot_token
237
+ else:
238
+ raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
239
+ result[i, :len(tokens)] = torch.tensor(tokens)
240
+
241
+ return result
clip/clipseg.py ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from os.path import basename, dirname, join, isfile
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as nnf
6
+ from torch.nn.modules.activation import ReLU
7
+
8
+
9
+ def get_prompt_list(prompt):
10
+ if prompt == 'plain':
11
+ return ['{}']
12
+ elif prompt == 'fixed':
13
+ return ['a photo of a {}.']
14
+ elif prompt == 'shuffle':
15
+ return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
16
+ elif prompt == 'shuffle+':
17
+ return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
18
+ 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
19
+ 'a bad photo of a {}.', 'a photo of the {}.']
20
+ else:
21
+ raise ValueError('Invalid value for prompt')
22
+
23
+
24
+ def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
25
+ """
26
+ Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
27
+ The mlp and layer norm come from CLIP.
28
+ x: input.
29
+ b: multihead attention module.
30
+ """
31
+
32
+ x_ = b.ln_1(x)
33
+ q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1)
34
+ tgt_len, bsz, embed_dim = q.size()
35
+
36
+ head_dim = embed_dim // b.attn.num_heads
37
+ scaling = float(head_dim) ** -0.5
38
+
39
+ q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
40
+ k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
41
+ v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
42
+
43
+ q = q * scaling
44
+
45
+ attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2
46
+ if attn_mask is not None:
47
+
48
+
49
+ attn_mask_type, attn_mask = attn_mask
50
+ n_heads = attn_output_weights.size(0) // attn_mask.size(0)
51
+ attn_mask = attn_mask.repeat(n_heads, 1)
52
+
53
+ if attn_mask_type == 'cls_token':
54
+ # the mask only affects similarities compared to the readout-token.
55
+ attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...]
56
+ # attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
57
+
58
+ if attn_mask_type == 'all':
59
+ # print(attn_output_weights.shape, attn_mask[:, None].shape)
60
+ attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
61
+
62
+
63
+ attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
64
+
65
+ attn_output = torch.bmm(attn_output_weights, v)
66
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
67
+ attn_output = b.attn.out_proj(attn_output)
68
+
69
+ x = x + attn_output
70
+ x = x + b.mlp(b.ln_2(x))
71
+
72
+ if with_aff:
73
+ return x, attn_output_weights
74
+ else:
75
+ return x
76
+
77
+
78
+ class CLIPDenseBase(nn.Module):
79
+
80
+ def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
81
+ super().__init__()
82
+
83
+ import clip
84
+
85
+ # prec = torch.FloatTensor
86
+ self.clip_model, _ = clip.load(version, device='cpu', jit=False)
87
+ self.model = self.clip_model.visual
88
+
89
+ # if not None, scale conv weights such that we obtain n_tokens.
90
+ self.n_tokens = n_tokens
91
+
92
+ for p in self.clip_model.parameters():
93
+ p.requires_grad_(False)
94
+
95
+ # conditional
96
+ if reduce_cond is not None:
97
+ self.reduce_cond = nn.Linear(512, reduce_cond)
98
+ for p in self.reduce_cond.parameters():
99
+ p.requires_grad_(False)
100
+ else:
101
+ self.reduce_cond = None
102
+
103
+ self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
104
+ self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
105
+
106
+ self.reduce = nn.Linear(768, reduce_dim)
107
+
108
+ self.prompt_list = get_prompt_list(prompt)
109
+
110
+ # precomputed prompts
111
+ import pickle
112
+ if isfile('precomputed_prompt_vectors.pickle'):
113
+ precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
114
+ self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
115
+ else:
116
+ self.precomputed_prompts = dict()
117
+
118
+ def rescaled_pos_emb(self, new_size):
119
+ assert len(new_size) == 2
120
+
121
+ a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
122
+ b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
123
+ return torch.cat([self.model.positional_embedding[:1], b])
124
+
125
+ def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
126
+
127
+
128
+ with torch.no_grad():
129
+
130
+ inp_size = x_inp.shape[2:]
131
+
132
+ if self.n_tokens is not None:
133
+ stride2 = x_inp.shape[2] // self.n_tokens
134
+ conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True)
135
+ x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation)
136
+ else:
137
+ x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
138
+
139
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
140
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
141
+
142
+ x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
143
+
144
+ standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
145
+
146
+ if x.shape[1] != standard_n_tokens:
147
+ new_shape = int(math.sqrt(x.shape[1]-1))
148
+ x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:]
149
+ else:
150
+ x = x + self.model.positional_embedding.to(x.dtype)
151
+
152
+ x = self.model.ln_pre(x)
153
+
154
+ x = x.permute(1, 0, 2) # NLD -> LND
155
+
156
+ activations, affinities = [], []
157
+ for i, res_block in enumerate(self.model.transformer.resblocks):
158
+
159
+ if mask is not None:
160
+ mask_layer, mask_type, mask_tensor = mask
161
+ if mask_layer == i or mask_layer == 'all':
162
+ # import ipdb; ipdb.set_trace()
163
+ size = int(math.sqrt(x.shape[0] - 1))
164
+
165
+ attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size))
166
+
167
+ else:
168
+ attn_mask = None
169
+ else:
170
+ attn_mask = None
171
+
172
+ x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask)
173
+
174
+ if i in extract_layers:
175
+ affinities += [aff_per_head]
176
+
177
+ #if self.n_tokens is not None:
178
+ # activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
179
+ #else:
180
+ activations += [x]
181
+
182
+ if len(extract_layers) > 0 and i == max(extract_layers) and skip:
183
+ print('early skip')
184
+ break
185
+
186
+ x = x.permute(1, 0, 2) # LND -> NLD
187
+ x = self.model.ln_post(x[:, 0, :])
188
+
189
+ if self.model.proj is not None:
190
+ x = x @ self.model.proj
191
+
192
+ return x, activations, affinities
193
+
194
+ def sample_prompts(self, words, prompt_list=None):
195
+
196
+ prompt_list = prompt_list if prompt_list is not None else self.prompt_list
197
+
198
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
199
+ prompts = [prompt_list[i] for i in prompt_indices]
200
+ return [promt.format(w) for promt, w in zip(prompts, words)]
201
+
202
+ def get_cond_vec(self, conditional, batch_size):
203
+ # compute conditional from a single string
204
+ if conditional is not None and type(conditional) == str:
205
+ cond = self.compute_conditional(conditional)
206
+ cond = cond.repeat(batch_size, 1)
207
+
208
+ # compute conditional from string list/tuple
209
+ elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
210
+ assert len(conditional) == batch_size
211
+ cond = self.compute_conditional(conditional)
212
+
213
+ # use conditional directly
214
+ elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
215
+ cond = conditional
216
+
217
+ # compute conditional from image
218
+ elif conditional is not None and type(conditional) == torch.Tensor:
219
+ with torch.no_grad():
220
+ cond, _, _ = self.visual_forward(conditional)
221
+ else:
222
+ raise ValueError('invalid conditional')
223
+ return cond
224
+
225
+ def compute_conditional(self, conditional):
226
+ import clip
227
+
228
+ dev = next(self.parameters()).device
229
+
230
+ if type(conditional) in {list, tuple}:
231
+ text_tokens = clip.tokenize(conditional).to(dev)
232
+ cond = self.clip_model.encode_text(text_tokens)
233
+ else:
234
+ if conditional in self.precomputed_prompts:
235
+ cond = self.precomputed_prompts[conditional].float().to(dev)
236
+ else:
237
+ text_tokens = clip.tokenize([conditional]).to(dev)
238
+ cond = self.clip_model.encode_text(text_tokens)[0]
239
+
240
+ if self.shift_vector is not None:
241
+ return cond + self.shift_vector
242
+ else:
243
+ return cond
244
+
245
+
246
+ def clip_load_untrained(version):
247
+ assert version == 'ViT-B/16'
248
+ from clip.model import CLIP
249
+ from clip.clip import _MODELS, _download
250
+ model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval()
251
+ state_dict = model.state_dict()
252
+
253
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
254
+ vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
255
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
256
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
257
+ image_resolution = vision_patch_size * grid_size
258
+ embed_dim = state_dict["text_projection"].shape[1]
259
+ context_length = state_dict["positional_embedding"].shape[0]
260
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
261
+ transformer_width = state_dict["ln_final.weight"].shape[0]
262
+ transformer_heads = transformer_width // 64
263
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
264
+
265
+ return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size,
266
+ context_length, vocab_size, transformer_width, transformer_heads, transformer_layers)
267
+
268
+
269
+ class CLIPDensePredT(CLIPDenseBase):
270
+
271
+ def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
272
+ extra_blocks=0, reduce_cond=None, fix_shift=False,
273
+ learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False,
274
+ add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False):
275
+
276
+ super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
277
+ # device = 'cpu'
278
+
279
+ self.extract_layers = extract_layers
280
+ self.cond_layer = cond_layer
281
+ self.limit_to_clip_only = limit_to_clip_only
282
+ self.process_cond = None
283
+ self.rev_activations = rev_activations
284
+
285
+ depth = len(extract_layers)
286
+
287
+ if add_calibration:
288
+ self.calibration_conds = 1
289
+
290
+ self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
291
+
292
+ self.add_activation1 = True
293
+
294
+ self.version = version
295
+
296
+ self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
297
+
298
+ if fix_shift:
299
+ # self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
300
+ self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False)
301
+ # self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
302
+ else:
303
+ self.shift_vector = None
304
+
305
+ if trans_conv is None:
306
+ trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
307
+ else:
308
+ # explicitly define transposed conv kernel size
309
+ trans_conv_ks = (trans_conv, trans_conv)
310
+
311
+ if not complex_trans_conv:
312
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
313
+ else:
314
+ assert trans_conv_ks[0] == trans_conv_ks[1]
315
+
316
+ tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)
317
+
318
+ self.trans_conv = nn.Sequential(
319
+ nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
320
+ nn.ReLU(),
321
+ nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]),
322
+ nn.ReLU(),
323
+ nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]),
324
+ )
325
+
326
+ # self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
327
+
328
+ assert len(self.extract_layers) == depth
329
+
330
+ self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
331
+ self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
332
+ self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
333
+
334
+ # refinement and trans conv
335
+
336
+ if learn_trans_conv_only:
337
+ for p in self.parameters():
338
+ p.requires_grad_(False)
339
+
340
+ for p in self.trans_conv.parameters():
341
+ p.requires_grad_(True)
342
+
343
+ self.prompt_list = get_prompt_list(prompt)
344
+
345
+
346
+ def forward(self, inp_image, conditional=None, return_features=False, mask=None):
347
+
348
+ assert type(return_features) == bool
349
+
350
+ inp_image = inp_image.to(self.model.positional_embedding.device)
351
+
352
+ if mask is not None:
353
+ raise ValueError('mask not supported')
354
+
355
+ # x_inp = normalize(inp_image)
356
+ x_inp = inp_image
357
+
358
+ bs, dev = inp_image.shape[0], x_inp.device
359
+
360
+ cond = self.get_cond_vec(conditional, bs)
361
+
362
+ visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
363
+
364
+ activation1 = activations[0]
365
+ activations = activations[1:]
366
+
367
+ _activations = activations[::-1] if not self.rev_activations else activations
368
+
369
+ a = None
370
+ for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)):
371
+
372
+ if a is not None:
373
+ a = reduce(activation) + a
374
+ else:
375
+ a = reduce(activation)
376
+
377
+ if i == self.cond_layer:
378
+ if self.reduce_cond is not None:
379
+ cond = self.reduce_cond(cond)
380
+
381
+ a = self.film_mul(cond) * a + self.film_add(cond)
382
+
383
+ a = block(a)
384
+
385
+ for block in self.extra_blocks:
386
+ a = a + block(a)
387
+
388
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
389
+
390
+ size = int(math.sqrt(a.shape[2]))
391
+
392
+ a = a.view(bs, a.shape[1], size, size)
393
+
394
+ a = self.trans_conv(a)
395
+
396
+ if self.n_tokens is not None:
397
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True)
398
+
399
+ if self.upsample_proj is not None:
400
+ a = self.upsample_proj(a)
401
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
402
+
403
+ if return_features:
404
+ return a, visual_q, cond, [activation1] + activations
405
+ else:
406
+ return a,
407
+
408
+
409
+
410
+ class CLIPDensePredTMasked(CLIPDensePredT):
411
+
412
+ def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4,
413
+ prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False,
414
+ refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None):
415
+
416
+ super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim,
417
+ n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond,
418
+ fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only,
419
+ limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration,
420
+ n_tokens=n_tokens)
421
+
422
+ def visual_forward_masked(self, img_s, seg_s):
423
+ return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s))
424
+
425
+ def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
426
+
427
+ if seg_s is None:
428
+ cond = cond_or_img_s
429
+ else:
430
+ img_s = cond_or_img_s
431
+
432
+ with torch.no_grad():
433
+ cond, _, _ = self.visual_forward_masked(img_s, seg_s)
434
+
435
+ return super().forward(img_q, cond, return_features=return_features)
436
+
437
+
438
+
439
+ class CLIPDenseBaseline(CLIPDenseBase):
440
+
441
+ def __init__(self, version='ViT-B/32', cond_layer=0,
442
+ extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed',
443
+ reduce_cond=None, limit_to_clip_only=False, n_tokens=None):
444
+
445
+ super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
446
+ device = 'cpu'
447
+
448
+ # self.cond_layer = cond_layer
449
+ self.extract_layer = extract_layer
450
+ self.limit_to_clip_only = limit_to_clip_only
451
+ self.shift_vector = None
452
+
453
+ self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
454
+
455
+ assert reduce2_dim is not None
456
+
457
+ self.reduce2 = nn.Sequential(
458
+ nn.Linear(reduce_dim, reduce2_dim),
459
+ nn.ReLU(),
460
+ nn.Linear(reduce2_dim, reduce_dim)
461
+ )
462
+
463
+ trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
464
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
465
+
466
+
467
+ def forward(self, inp_image, conditional=None, return_features=False):
468
+
469
+ inp_image = inp_image.to(self.model.positional_embedding.device)
470
+
471
+ # x_inp = normalize(inp_image)
472
+ x_inp = inp_image
473
+
474
+ bs, dev = inp_image.shape[0], x_inp.device
475
+
476
+ cond = self.get_cond_vec(conditional, bs)
477
+
478
+ visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer])
479
+
480
+ a = activations[0]
481
+ a = self.reduce(a)
482
+ a = self.film_mul(cond) * a + self.film_add(cond)
483
+
484
+ if self.reduce2 is not None:
485
+ a = self.reduce2(a)
486
+
487
+ # the original model would execute a transformer block here
488
+
489
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
490
+
491
+ size = int(math.sqrt(a.shape[2]))
492
+
493
+ a = a.view(bs, a.shape[1], size, size)
494
+ a = self.trans_conv(a)
495
+
496
+ if return_features:
497
+ return a, visual_q, cond, activations
498
+ else:
499
+ return a,
500
+
501
+
502
+ class CLIPSegMultiLabel(nn.Module):
503
+
504
+ def __init__(self, model) -> None:
505
+ super().__init__()
506
+
507
+ from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
508
+
509
+ self.pascal_classes = VOC
510
+
511
+ from clip.clipseg import CLIPDensePredT
512
+ from general_utils import load_model
513
+ # self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
514
+ self.clipseg = load_model(model, strict=False)
515
+
516
+ self.clipseg.eval()
517
+
518
+ def forward(self, x):
519
+
520
+ bs = x.shape[0]
521
+ out = torch.ones(21, bs, 352, 352).to(x.device) * -10
522
+
523
+ for class_id, class_name in enumerate(self.pascal_classes):
524
+
525
+ fac = 3 if class_name == 'background' else 1
526
+
527
+ with torch.no_grad():
528
+ pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac
529
+
530
+ out[class_id] += pred
531
+
532
+
533
+ out = out.permute(1, 0, 2, 3)
534
+
535
+ return out
536
+
537
+ # construct output tensor
538
+
clip/model.py ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+ from typing import Tuple, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from torch import nn
8
+
9
+
10
+ class Bottleneck(nn.Module):
11
+ expansion = 4
12
+
13
+ def __init__(self, inplanes, planes, stride=1):
14
+ super().__init__()
15
+
16
+ # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
17
+ self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
18
+ self.bn1 = nn.BatchNorm2d(planes)
19
+ self.relu1 = nn.ReLU(inplace=True)
20
+
21
+ self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
22
+ self.bn2 = nn.BatchNorm2d(planes)
23
+ self.relu2 = nn.ReLU(inplace=True)
24
+
25
+ self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
26
+
27
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
28
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
29
+ self.relu3 = nn.ReLU(inplace=True)
30
+
31
+ self.downsample = None
32
+ self.stride = stride
33
+
34
+ if stride > 1 or inplanes != planes * Bottleneck.expansion:
35
+ # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
36
+ self.downsample = nn.Sequential(OrderedDict([
37
+ ("-1", nn.AvgPool2d(stride)),
38
+ ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
39
+ ("1", nn.BatchNorm2d(planes * self.expansion))
40
+ ]))
41
+
42
+ def forward(self, x: torch.Tensor):
43
+ identity = x
44
+
45
+ out = self.relu1(self.bn1(self.conv1(x)))
46
+ out = self.relu2(self.bn2(self.conv2(out)))
47
+ out = self.avgpool(out)
48
+ out = self.bn3(self.conv3(out))
49
+
50
+ if self.downsample is not None:
51
+ identity = self.downsample(x)
52
+
53
+ out += identity
54
+ out = self.relu3(out)
55
+ return out
56
+
57
+
58
+ class AttentionPool2d(nn.Module):
59
+ def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
60
+ super().__init__()
61
+ self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
62
+ self.k_proj = nn.Linear(embed_dim, embed_dim)
63
+ self.q_proj = nn.Linear(embed_dim, embed_dim)
64
+ self.v_proj = nn.Linear(embed_dim, embed_dim)
65
+ self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
66
+ self.num_heads = num_heads
67
+
68
+ def forward(self, x):
69
+ x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
70
+ x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
71
+ x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
72
+ x, _ = F.multi_head_attention_forward(
73
+ query=x[:1], key=x, value=x,
74
+ embed_dim_to_check=x.shape[-1],
75
+ num_heads=self.num_heads,
76
+ q_proj_weight=self.q_proj.weight,
77
+ k_proj_weight=self.k_proj.weight,
78
+ v_proj_weight=self.v_proj.weight,
79
+ in_proj_weight=None,
80
+ in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
81
+ bias_k=None,
82
+ bias_v=None,
83
+ add_zero_attn=False,
84
+ dropout_p=0,
85
+ out_proj_weight=self.c_proj.weight,
86
+ out_proj_bias=self.c_proj.bias,
87
+ use_separate_proj_weight=True,
88
+ training=self.training,
89
+ need_weights=False
90
+ )
91
+ return x.squeeze(0)
92
+
93
+
94
+ class ModifiedResNet(nn.Module):
95
+ """
96
+ A ResNet class that is similar to torchvision's but contains the following changes:
97
+ - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
98
+ - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
99
+ - The final pooling layer is a QKV attention instead of an average pool
100
+ """
101
+
102
+ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
103
+ super().__init__()
104
+ self.output_dim = output_dim
105
+ self.input_resolution = input_resolution
106
+
107
+ # the 3-layer stem
108
+ self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
109
+ self.bn1 = nn.BatchNorm2d(width // 2)
110
+ self.relu1 = nn.ReLU(inplace=True)
111
+ self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
112
+ self.bn2 = nn.BatchNorm2d(width // 2)
113
+ self.relu2 = nn.ReLU(inplace=True)
114
+ self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
115
+ self.bn3 = nn.BatchNorm2d(width)
116
+ self.relu3 = nn.ReLU(inplace=True)
117
+ self.avgpool = nn.AvgPool2d(2)
118
+
119
+ # residual layers
120
+ self._inplanes = width # this is a *mutable* variable used during construction
121
+ self.layer1 = self._make_layer(width, layers[0])
122
+ self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
123
+ self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
124
+ self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
125
+
126
+ embed_dim = width * 32 # the ResNet feature dimension
127
+ self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
128
+
129
+ def _make_layer(self, planes, blocks, stride=1):
130
+ layers = [Bottleneck(self._inplanes, planes, stride)]
131
+
132
+ self._inplanes = planes * Bottleneck.expansion
133
+ for _ in range(1, blocks):
134
+ layers.append(Bottleneck(self._inplanes, planes))
135
+
136
+ return nn.Sequential(*layers)
137
+
138
+ def forward(self, x):
139
+ def stem(x):
140
+ x = self.relu1(self.bn1(self.conv1(x)))
141
+ x = self.relu2(self.bn2(self.conv2(x)))
142
+ x = self.relu3(self.bn3(self.conv3(x)))
143
+ x = self.avgpool(x)
144
+ return x
145
+
146
+ x = x.type(self.conv1.weight.dtype)
147
+ x = stem(x)
148
+ x = self.layer1(x)
149
+ x = self.layer2(x)
150
+ x = self.layer3(x)
151
+ x = self.layer4(x)
152
+ x = self.attnpool(x)
153
+
154
+ return x
155
+
156
+
157
+ class LayerNorm(nn.LayerNorm):
158
+ """Subclass torch's LayerNorm to handle fp16."""
159
+
160
+ def forward(self, x: torch.Tensor):
161
+ orig_type = x.dtype
162
+ ret = super().forward(x.type(torch.float32))
163
+ return ret.type(orig_type)
164
+
165
+
166
+ class QuickGELU(nn.Module):
167
+ def forward(self, x: torch.Tensor):
168
+ return x * torch.sigmoid(1.702 * x)
169
+
170
+
171
+ class ResidualAttentionBlock(nn.Module):
172
+ def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
173
+ super().__init__()
174
+
175
+ self.attn = nn.MultiheadAttention(d_model, n_head)
176
+ self.ln_1 = LayerNorm(d_model)
177
+ self.mlp = nn.Sequential(OrderedDict([
178
+ ("c_fc", nn.Linear(d_model, d_model * 4)),
179
+ ("gelu", QuickGELU()),
180
+ ("c_proj", nn.Linear(d_model * 4, d_model))
181
+ ]))
182
+ self.ln_2 = LayerNorm(d_model)
183
+ self.attn_mask = attn_mask
184
+
185
+ def attention(self, x: torch.Tensor):
186
+ self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
187
+ return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
188
+
189
+ def forward(self, x: torch.Tensor):
190
+ x = x + self.attention(self.ln_1(x))
191
+ x = x + self.mlp(self.ln_2(x))
192
+ return x
193
+
194
+
195
+ class Transformer(nn.Module):
196
+ def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
197
+ super().__init__()
198
+ self.width = width
199
+ self.layers = layers
200
+ self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
201
+
202
+ def forward(self, x: torch.Tensor):
203
+ return self.resblocks(x)
204
+
205
+
206
+ class VisionTransformer(nn.Module):
207
+ def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
208
+ super().__init__()
209
+ self.input_resolution = input_resolution
210
+ self.output_dim = output_dim
211
+ self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
212
+
213
+ scale = width ** -0.5
214
+ self.class_embedding = nn.Parameter(scale * torch.randn(width))
215
+ self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
216
+ self.ln_pre = LayerNorm(width)
217
+
218
+ self.transformer = Transformer(width, layers, heads)
219
+
220
+ self.ln_post = LayerNorm(width)
221
+ self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
222
+
223
+ def forward(self, x: torch.Tensor):
224
+ x = self.conv1(x) # shape = [*, width, grid, grid]
225
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
226
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
227
+ x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
228
+ x = x + self.positional_embedding.to(x.dtype)
229
+ x = self.ln_pre(x)
230
+
231
+ x = x.permute(1, 0, 2) # NLD -> LND
232
+ x = self.transformer(x)
233
+ x = x.permute(1, 0, 2) # LND -> NLD
234
+
235
+ x = self.ln_post(x[:, 0, :])
236
+
237
+ if self.proj is not None:
238
+ x = x @ self.proj
239
+
240
+ return x
241
+
242
+
243
+ class CLIP(nn.Module):
244
+ def __init__(self,
245
+ embed_dim: int,
246
+ # vision
247
+ image_resolution: int,
248
+ vision_layers: Union[Tuple[int, int, int, int], int],
249
+ vision_width: int,
250
+ vision_patch_size: int,
251
+ # text
252
+ context_length: int,
253
+ vocab_size: int,
254
+ transformer_width: int,
255
+ transformer_heads: int,
256
+ transformer_layers: int
257
+ ):
258
+ super().__init__()
259
+
260
+ self.context_length = context_length
261
+
262
+ if isinstance(vision_layers, (tuple, list)):
263
+ vision_heads = vision_width * 32 // 64
264
+ self.visual = ModifiedResNet(
265
+ layers=vision_layers,
266
+ output_dim=embed_dim,
267
+ heads=vision_heads,
268
+ input_resolution=image_resolution,
269
+ width=vision_width
270
+ )
271
+ else:
272
+ vision_heads = vision_width // 64
273
+ self.visual = VisionTransformer(
274
+ input_resolution=image_resolution,
275
+ patch_size=vision_patch_size,
276
+ width=vision_width,
277
+ layers=vision_layers,
278
+ heads=vision_heads,
279
+ output_dim=embed_dim
280
+ )
281
+
282
+ self.transformer = Transformer(
283
+ width=transformer_width,
284
+ layers=transformer_layers,
285
+ heads=transformer_heads,
286
+ attn_mask=self.build_attention_mask()
287
+ )
288
+
289
+ self.vocab_size = vocab_size
290
+ self.token_embedding = nn.Embedding(vocab_size, transformer_width)
291
+ self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
292
+ self.ln_final = LayerNorm(transformer_width)
293
+
294
+ self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
295
+ self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
296
+
297
+ self.initialize_parameters()
298
+
299
+ def initialize_parameters(self):
300
+ nn.init.normal_(self.token_embedding.weight, std=0.02)
301
+ nn.init.normal_(self.positional_embedding, std=0.01)
302
+
303
+ if isinstance(self.visual, ModifiedResNet):
304
+ if self.visual.attnpool is not None:
305
+ std = self.visual.attnpool.c_proj.in_features ** -0.5
306
+ nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
307
+ nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
308
+ nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
309
+ nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
310
+
311
+ for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
312
+ for name, param in resnet_block.named_parameters():
313
+ if name.endswith("bn3.weight"):
314
+ nn.init.zeros_(param)
315
+
316
+ proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
317
+ attn_std = self.transformer.width ** -0.5
318
+ fc_std = (2 * self.transformer.width) ** -0.5
319
+ for block in self.transformer.resblocks:
320
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
321
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
322
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
323
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
324
+
325
+ if self.text_projection is not None:
326
+ nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
327
+
328
+ def build_attention_mask(self):
329
+ # lazily create causal attention mask, with full attention between the vision tokens
330
+ # pytorch uses additive attention mask; fill with -inf
331
+ mask = torch.empty(self.context_length, self.context_length)
332
+ mask.fill_(float("-inf"))
333
+ mask.triu_(1) # zero out the lower diagonal
334
+ return mask
335
+
336
+ @property
337
+ def dtype(self):
338
+ return self.visual.conv1.weight.dtype
339
+
340
+ def encode_image(self, image):
341
+ return self.visual(image.type(self.dtype))
342
+
343
+ def encode_text(self, text):
344
+ x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
345
+
346
+ x = x + self.positional_embedding.type(self.dtype)
347
+ x = x.permute(1, 0, 2) # NLD -> LND
348
+ x = self.transformer(x)
349
+ x = x.permute(1, 0, 2) # LND -> NLD
350
+ x = self.ln_final(x).type(self.dtype)
351
+
352
+ # x.shape = [batch_size, n_ctx, transformer.width]
353
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
354
+ x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
355
+
356
+ return x
357
+
358
+ def forward(self, image, text):
359
+ image_features = self.encode_image(image)
360
+ text_features = self.encode_text(text)
361
+
362
+ # normalized features
363
+ image_features = image_features / image_features.norm(dim=1, keepdim=True)
364
+ text_features = text_features / text_features.norm(dim=1, keepdim=True)
365
+
366
+ # cosine similarity as logits
367
+ logit_scale = self.logit_scale.exp()
368
+ logits_per_image = logit_scale * image_features @ text_features.t()
369
+ logits_per_text = logits_per_image.t()
370
+
371
+ # shape = [global_batch_size, global_batch_size]
372
+ return logits_per_image, logits_per_text
373
+
374
+
375
+ def convert_weights(model: nn.Module):
376
+ """Convert applicable model parameters to fp16"""
377
+
378
+ def _convert_weights_to_fp16(l):
379
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
380
+ l.weight.data = l.weight.data.half()
381
+ if l.bias is not None:
382
+ l.bias.data = l.bias.data.half()
383
+
384
+ if isinstance(l, nn.MultiheadAttention):
385
+ for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
386
+ tensor = getattr(l, attr)
387
+ if tensor is not None:
388
+ tensor.data = tensor.data.half()
389
+
390
+ for name in ["text_projection", "proj"]:
391
+ if hasattr(l, name):
392
+ attr = getattr(l, name)
393
+ if attr is not None:
394
+ attr.data = attr.data.half()
395
+
396
+ model.apply(_convert_weights_to_fp16)
397
+
398
+
399
+ def build_model(state_dict: dict):
400
+ vit = "visual.proj" in state_dict
401
+
402
+ if vit:
403
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
404
+ vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
405
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
406
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
407
+ image_resolution = vision_patch_size * grid_size
408
+ else:
409
+ counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
410
+ vision_layers = tuple(counts)
411
+ vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
412
+ output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
413
+ vision_patch_size = None
414
+ assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
415
+ image_resolution = output_width * 32
416
+
417
+ embed_dim = state_dict["text_projection"].shape[1]
418
+ context_length = state_dict["positional_embedding"].shape[0]
419
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
420
+ transformer_width = state_dict["ln_final.weight"].shape[0]
421
+ transformer_heads = transformer_width // 64
422
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
423
+
424
+ model = CLIP(
425
+ embed_dim,
426
+ image_resolution, vision_layers, vision_width, vision_patch_size,
427
+ context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
428
+ )
429
+
430
+ for key in ["input_resolution", "context_length", "vocab_size"]:
431
+ if key in state_dict:
432
+ del state_dict[key]
433
+
434
+ convert_weights(model)
435
+ model.load_state_dict(state_dict)
436
+ return model.eval()
clip/simple_tokenizer.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gzip
2
+ import html
3
+ import os
4
+ from functools import lru_cache
5
+
6
+ import ftfy
7
+ import regex as re
8
+
9
+
10
+ @lru_cache()
11
+ def default_bpe():
12
+ return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
13
+
14
+
15
+ @lru_cache()
16
+ def bytes_to_unicode():
17
+ """
18
+ Returns list of utf-8 byte and a corresponding list of unicode strings.
19
+ The reversible bpe codes work on unicode strings.
20
+ This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
21
+ When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
22
+ This is a signficant percentage of your normal, say, 32K bpe vocab.
23
+ To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
24
+ And avoids mapping to whitespace/control characters the bpe code barfs on.
25
+ """
26
+ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
27
+ cs = bs[:]
28
+ n = 0
29
+ for b in range(2**8):
30
+ if b not in bs:
31
+ bs.append(b)
32
+ cs.append(2**8+n)
33
+ n += 1
34
+ cs = [chr(n) for n in cs]
35
+ return dict(zip(bs, cs))
36
+
37
+
38
+ def get_pairs(word):
39
+ """Return set of symbol pairs in a word.
40
+ Word is represented as tuple of symbols (symbols being variable-length strings).
41
+ """
42
+ pairs = set()
43
+ prev_char = word[0]
44
+ for char in word[1:]:
45
+ pairs.add((prev_char, char))
46
+ prev_char = char
47
+ return pairs
48
+
49
+
50
+ def basic_clean(text):
51
+ text = ftfy.fix_text(text)
52
+ text = html.unescape(html.unescape(text))
53
+ return text.strip()
54
+
55
+
56
+ def whitespace_clean(text):
57
+ text = re.sub(r'\s+', ' ', text)
58
+ text = text.strip()
59
+ return text
60
+
61
+
62
+ class SimpleTokenizer(object):
63
+ def __init__(self, bpe_path: str = default_bpe()):
64
+ self.byte_encoder = bytes_to_unicode()
65
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
66
+ merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
67
+ merges = merges[1:49152-256-2+1]
68
+ merges = [tuple(merge.split()) for merge in merges]
69
+ vocab = list(bytes_to_unicode().values())
70
+ vocab = vocab + [v+'</w>' for v in vocab]
71
+ for merge in merges:
72
+ vocab.append(''.join(merge))
73
+ vocab.extend(['<|startoftext|>', '<|endoftext|>'])
74
+ self.encoder = dict(zip(vocab, range(len(vocab))))
75
+ self.decoder = {v: k for k, v in self.encoder.items()}
76
+ self.bpe_ranks = dict(zip(merges, range(len(merges))))
77
+ self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
78
+ self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
79
+
80
+ def bpe(self, token):
81
+ if token in self.cache:
82
+ return self.cache[token]
83
+ word = tuple(token[:-1]) + ( token[-1] + '</w>',)
84
+ pairs = get_pairs(word)
85
+
86
+ if not pairs:
87
+ return token+'</w>'
88
+
89
+ while True:
90
+ bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
91
+ if bigram not in self.bpe_ranks:
92
+ break
93
+ first, second = bigram
94
+ new_word = []
95
+ i = 0
96
+ while i < len(word):
97
+ try:
98
+ j = word.index(first, i)
99
+ new_word.extend(word[i:j])
100
+ i = j
101
+ except:
102
+ new_word.extend(word[i:])
103
+ break
104
+
105
+ if word[i] == first and i < len(word)-1 and word[i+1] == second:
106
+ new_word.append(first+second)
107
+ i += 2
108
+ else:
109
+ new_word.append(word[i])
110
+ i += 1
111
+ new_word = tuple(new_word)
112
+ word = new_word
113
+ if len(word) == 1:
114
+ break
115
+ else:
116
+ pairs = get_pairs(word)
117
+ word = ' '.join(word)
118
+ self.cache[token] = word
119
+ return word
120
+
121
+ def encode(self, text):
122
+ bpe_tokens = []
123
+ text = whitespace_clean(basic_clean(text)).lower()
124
+ for token in re.findall(self.pat, text):
125
+ token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
126
+ bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
127
+ return bpe_tokens
128
+
129
+ def decode(self, tokens):
130
+ text = ''.join([self.decoder[token] for token in tokens])
131
+ text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
132
+ return text
clip/vitseg.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from posixpath import basename, dirname, join
3
+ # import clip
4
+ from clip.model import convert_weights
5
+ import torch
6
+ import json
7
+ from torch import nn
8
+ from torch.nn import functional as nnf
9
+ from torch.nn.modules import activation
10
+ from torch.nn.modules.activation import ReLU
11
+ from torchvision import transforms
12
+
13
+ normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
14
+
15
+ from torchvision.models import ResNet
16
+
17
+
18
+ def process_prompts(conditional, prompt_list, conditional_map):
19
+ # DEPRECATED
20
+
21
+ # randomly sample a synonym
22
+ words = [conditional_map[int(i)] for i in conditional]
23
+ words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words]
24
+ words = [w.replace('_', ' ') for w in words]
25
+
26
+ if prompt_list is not None:
27
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
28
+ prompts = [prompt_list[i] for i in prompt_indices]
29
+ else:
30
+ prompts = ['a photo of {}'] * (len(words))
31
+
32
+ return [promt.format(w) for promt, w in zip(prompts, words)]
33
+
34
+
35
+ class VITDenseBase(nn.Module):
36
+
37
+ def rescaled_pos_emb(self, new_size):
38
+ assert len(new_size) == 2
39
+
40
+ a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
41
+ b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
42
+ return torch.cat([self.model.positional_embedding[:1], b])
43
+
44
+ def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
45
+
46
+ with torch.no_grad():
47
+
48
+ x_inp = nnf.interpolate(x_inp, (384, 384))
49
+
50
+ x = self.model.patch_embed(x_inp)
51
+ cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
52
+ if self.model.dist_token is None:
53
+ x = torch.cat((cls_token, x), dim=1)
54
+ else:
55
+ x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
56
+ x = self.model.pos_drop(x + self.model.pos_embed)
57
+
58
+ activations = []
59
+ for i, block in enumerate(self.model.blocks):
60
+ x = block(x)
61
+
62
+ if i in extract_layers:
63
+ # permute to be compatible with CLIP
64
+ activations += [x.permute(1,0,2)]
65
+
66
+ x = self.model.norm(x)
67
+ x = self.model.head(self.model.pre_logits(x[:, 0]))
68
+
69
+ # again for CLIP compatibility
70
+ # x = x.permute(1, 0, 2)
71
+
72
+ return x, activations, None
73
+
74
+ def sample_prompts(self, words, prompt_list=None):
75
+
76
+ prompt_list = prompt_list if prompt_list is not None else self.prompt_list
77
+
78
+ prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
79
+ prompts = [prompt_list[i] for i in prompt_indices]
80
+ return [promt.format(w) for promt, w in zip(prompts, words)]
81
+
82
+ def get_cond_vec(self, conditional, batch_size):
83
+ # compute conditional from a single string
84
+ if conditional is not None and type(conditional) == str:
85
+ cond = self.compute_conditional(conditional)
86
+ cond = cond.repeat(batch_size, 1)
87
+
88
+ # compute conditional from string list/tuple
89
+ elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
90
+ assert len(conditional) == batch_size
91
+ cond = self.compute_conditional(conditional)
92
+
93
+ # use conditional directly
94
+ elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
95
+ cond = conditional
96
+
97
+ # compute conditional from image
98
+ elif conditional is not None and type(conditional) == torch.Tensor:
99
+ with torch.no_grad():
100
+ cond, _, _ = self.visual_forward(conditional)
101
+ else:
102
+ raise ValueError('invalid conditional')
103
+ return cond
104
+
105
+ def compute_conditional(self, conditional):
106
+ import clip
107
+
108
+ dev = next(self.parameters()).device
109
+
110
+ if type(conditional) in {list, tuple}:
111
+ text_tokens = clip.tokenize(conditional).to(dev)
112
+ cond = self.clip_model.encode_text(text_tokens)
113
+ else:
114
+ if conditional in self.precomputed_prompts:
115
+ cond = self.precomputed_prompts[conditional].float().to(dev)
116
+ else:
117
+ text_tokens = clip.tokenize([conditional]).to(dev)
118
+ cond = self.clip_model.encode_text(text_tokens)[0]
119
+
120
+ return cond
121
+
122
+
123
+ class VITDensePredT(VITDenseBase):
124
+
125
+ def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
126
+ depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False,
127
+ learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False,
128
+ add_calibration=False, process_cond=None, not_pretrained=False):
129
+ super().__init__()
130
+ # device = 'cpu'
131
+
132
+ self.extract_layers = extract_layers
133
+ self.cond_layer = cond_layer
134
+ self.limit_to_clip_only = limit_to_clip_only
135
+ self.process_cond = None
136
+
137
+ if add_calibration:
138
+ self.calibration_conds = 1
139
+
140
+ self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
141
+
142
+ self.add_activation1 = True
143
+
144
+ import timm
145
+ self.model = timm.create_model('vit_base_patch16_384', pretrained=True)
146
+ self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond)
147
+
148
+ for p in self.model.parameters():
149
+ p.requires_grad_(False)
150
+
151
+ import clip
152
+ self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False)
153
+ # del self.clip_model.visual
154
+
155
+
156
+ self.token_shape = (14, 14)
157
+
158
+ # conditional
159
+ if reduce_cond is not None:
160
+ self.reduce_cond = nn.Linear(512, reduce_cond)
161
+ for p in self.reduce_cond.parameters():
162
+ p.requires_grad_(False)
163
+ else:
164
+ self.reduce_cond = None
165
+
166
+ # self.film = AVAILABLE_BLOCKS['film'](512, 128)
167
+ self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
168
+ self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
169
+
170
+ # DEPRECATED
171
+ # self.conditional_map = {c['id']: c['synonyms'] for c in json.load(open(cond_map))}
172
+
173
+ assert len(self.extract_layers) == depth
174
+
175
+ self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
176
+ self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
177
+ self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
178
+
179
+ trans_conv_ks = (16, 16)
180
+ self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
181
+
182
+ # refinement and trans conv
183
+
184
+ if learn_trans_conv_only:
185
+ for p in self.parameters():
186
+ p.requires_grad_(False)
187
+
188
+ for p in self.trans_conv.parameters():
189
+ p.requires_grad_(True)
190
+
191
+ if prompt == 'fixed':
192
+ self.prompt_list = ['a photo of a {}.']
193
+ elif prompt == 'shuffle':
194
+ self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
195
+ elif prompt == 'shuffle+':
196
+ self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
197
+ 'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
198
+ 'a bad photo of a {}.', 'a photo of the {}.']
199
+ elif prompt == 'shuffle_clip':
200
+ from models.clip_prompts import imagenet_templates
201
+ self.prompt_list = imagenet_templates
202
+
203
+ if process_cond is not None:
204
+ if process_cond == 'clamp' or process_cond[0] == 'clamp':
205
+
206
+ val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2
207
+
208
+ def clamp_vec(x):
209
+ return torch.clamp(x, -val, val)
210
+
211
+ self.process_cond = clamp_vec
212
+
213
+ elif process_cond.endswith('.pth'):
214
+
215
+ shift = torch.load(process_cond)
216
+ def add_shift(x):
217
+ return x + shift.to(x.device)
218
+
219
+ self.process_cond = add_shift
220
+
221
+ import pickle
222
+ precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
223
+ self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
224
+
225
+
226
+ def forward(self, inp_image, conditional=None, return_features=False, mask=None):
227
+
228
+ assert type(return_features) == bool
229
+
230
+ # inp_image = inp_image.to(self.model.positional_embedding.device)
231
+
232
+ if mask is not None:
233
+ raise ValueError('mask not supported')
234
+
235
+ # x_inp = normalize(inp_image)
236
+ x_inp = inp_image
237
+
238
+ bs, dev = inp_image.shape[0], x_inp.device
239
+
240
+ inp_image_size = inp_image.shape[2:]
241
+
242
+ cond = self.get_cond_vec(conditional, bs)
243
+
244
+ visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
245
+
246
+ activation1 = activations[0]
247
+ activations = activations[1:]
248
+
249
+ a = None
250
+ for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)):
251
+
252
+ if a is not None:
253
+ a = reduce(activation) + a
254
+ else:
255
+ a = reduce(activation)
256
+
257
+ if i == self.cond_layer:
258
+ if self.reduce_cond is not None:
259
+ cond = self.reduce_cond(cond)
260
+
261
+ a = self.film_mul(cond) * a + self.film_add(cond)
262
+
263
+ a = block(a)
264
+
265
+ for block in self.extra_blocks:
266
+ a = a + block(a)
267
+
268
+ a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
269
+
270
+ size = int(math.sqrt(a.shape[2]))
271
+
272
+ a = a.view(bs, a.shape[1], size, size)
273
+
274
+ if self.trans_conv is not None:
275
+ a = self.trans_conv(a)
276
+
277
+ if self.upsample_proj is not None:
278
+ a = self.upsample_proj(a)
279
+ a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
280
+
281
+ a = nnf.interpolate(a, inp_image_size)
282
+
283
+ if return_features:
284
+ return a, visual_q, cond, [activation1] + activations
285
+ else:
286
+ return a,
config_colab.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ clear_output: true
2
+ force_cpu: false
3
+ max_threads: 3
4
+ memory_limit: 0
5
+ output_image_format: png
6
+ output_template: '{file}_{time}'
7
+ output_video_codec: libx264
8
+ output_video_format: mp4
9
+ provider: cuda
10
+ selected_theme: Default
11
+ server_name: ''
12
+ server_port: 0
13
+ server_share: true
14
+ video_quality: 14
docs/screenshot.png ADDED

Git LFS Details

  • SHA256: a86df433a470c2b123dbcc4b3e93b7ba00f261a862e5a5b8c747764dc5d6c147
  • Pointer size: 132 Bytes
  • Size of remote file: 3.55 MB
installer/installer.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import os
4
+ import shutil
5
+ import site
6
+ import subprocess
7
+ import sys
8
+
9
+
10
+ script_dir = os.getcwd()
11
+
12
+
13
+ def run_cmd(cmd, capture_output=False, env=None):
14
+ # Run shell commands
15
+ return subprocess.run(cmd, shell=True, capture_output=capture_output, env=env)
16
+
17
+
18
+ def check_env():
19
+ # If we have access to conda, we are probably in an environment
20
+ conda_not_exist = run_cmd("conda", capture_output=True).returncode
21
+ if conda_not_exist:
22
+ print("Conda is not installed. Exiting...")
23
+ sys.exit()
24
+
25
+ # Ensure this is a new environment and not the base environment
26
+ if os.environ["CONDA_DEFAULT_ENV"] == "base":
27
+ print("Create an environment for this project and activate it. Exiting...")
28
+ sys.exit()
29
+
30
+
31
+ def install_dependencies():
32
+ global MY_PATH
33
+
34
+ # Install Git and clone repo
35
+ run_cmd("conda install -y -k git")
36
+ run_cmd("git clone https://github.com/C0untFloyd/roop-unleashed.git")
37
+ os.chdir(MY_PATH)
38
+ run_cmd("git checkout ebf163acdb66de17abf408a86a72d00ddf49480c")
39
+ # Installs dependencies from requirements.txt
40
+ run_cmd("python -m pip install -r requirements.txt")
41
+
42
+
43
+
44
+ def update_dependencies():
45
+ global MY_PATH
46
+
47
+ os.chdir(MY_PATH)
48
+ # do a hard reset for to update even if there are local changes
49
+ run_cmd("git fetch --all")
50
+ run_cmd("git reset --hard origin/main")
51
+ run_cmd("git pull")
52
+ # Installs/Updates dependencies from all requirements.txt
53
+ run_cmd("python -m pip install -r requirements.txt")
54
+
55
+
56
+ def start_app():
57
+ global MY_PATH
58
+
59
+ os.chdir(MY_PATH)
60
+ # forward commandline arguments
61
+ sys.argv.pop(0)
62
+ args = ' '.join(sys.argv)
63
+ print("Launching App")
64
+ run_cmd(f'python run.py {args}')
65
+
66
+
67
+ if __name__ == "__main__":
68
+ global MY_PATH
69
+
70
+ MY_PATH = "roop-unleashed"
71
+
72
+
73
+ # Verifies we are in a conda environment
74
+ check_env()
75
+
76
+ # If webui has already been installed, skip and run
77
+ if not os.path.exists(MY_PATH):
78
+ install_dependencies()
79
+ else:
80
+ # moved update from batch to here, because of batch limitations
81
+ updatechoice = input("Check for Updates? [y/n]").lower()
82
+ if updatechoice == "y":
83
+ update_dependencies()
84
+
85
+ # Run the model with webui
86
+ os.chdir(script_dir)
87
+ start_app()
installer/windows_run.bat ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+
3
+ REM No CLI arguments supported anymore
4
+ set COMMANDLINE_ARGS=
5
+
6
+ cd /D "%~dp0"
7
+
8
+ echo "%CD%"| findstr /C:" " >nul && echo This script relies on Miniconda which can not be silently installed under a path with spaces. && goto end
9
+
10
+ set PATH=%PATH%;%SystemRoot%\system32
11
+
12
+ @rem config
13
+ set INSTALL_DIR=%cd%\installer_files
14
+ set CONDA_ROOT_PREFIX=%cd%\installer_files\conda
15
+ set INSTALL_ENV_DIR=%cd%\installer_files\env
16
+ set MINICONDA_DOWNLOAD_URL=https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
17
+ set FFMPEG_DOWNLOAD_URL=https://github.com/GyanD/codexffmpeg/releases/download/2023-06-21-git-1bcb8a7338/ffmpeg-2023-06-21-git-1bcb8a7338-essentials_build.zip
18
+ set INSTALL_FFMPEG_DIR=%cd%\installer_files\ffmpeg
19
+ set INSIGHTFACE_PACKAGE_URL=https://github.com/C0untFloyd/roop-unleashed/releases/download/3.6.6/insightface-0.7.3-cp310-cp310-win_amd64.whl
20
+ set INSIGHTFACE_PACKAGE_PATH=%INSTALL_DIR%\insightface-0.7.3-cp310-cp310-win_amd64.whl
21
+
22
+ set conda_exists=F
23
+ set ffmpeg_exists=F
24
+
25
+ @rem figure out whether git and conda needs to be installed
26
+ call "%CONDA_ROOT_PREFIX%\_conda.exe" --version >nul 2>&1
27
+ if "%ERRORLEVEL%" EQU "0" set conda_exists=T
28
+
29
+ @rem Check if FFmpeg is already in PATH
30
+ where ffmpeg >nul 2>&1
31
+ if "%ERRORLEVEL%" EQU "0" (
32
+ echo FFmpeg is already installed.
33
+ set ffmpeg_exists=T
34
+ )
35
+
36
+ @rem (if necessary) install git and conda into a contained environment
37
+
38
+ @rem download conda
39
+ if "%conda_exists%" == "F" (
40
+ echo Downloading Miniconda from %MINICONDA_DOWNLOAD_URL% to %INSTALL_DIR%\miniconda_installer.exe
41
+ mkdir "%INSTALL_DIR%"
42
+ call curl -Lk "%MINICONDA_DOWNLOAD_URL%" > "%INSTALL_DIR%\miniconda_installer.exe" || ( echo. && echo Miniconda failed to download. && goto end )
43
+ echo Installing Miniconda to %CONDA_ROOT_PREFIX%
44
+ start /wait "" "%INSTALL_DIR%\miniconda_installer.exe" /InstallationType=JustMe /NoShortcuts=1 /AddToPath=0 /RegisterPython=0 /NoRegistry=1 /S /D=%CONDA_ROOT_PREFIX%
45
+
46
+ @rem test the conda binary
47
+ echo Miniconda version:
48
+ call "%CONDA_ROOT_PREFIX%\_conda.exe" --version || ( echo. && echo Miniconda not found. && goto end )
49
+ )
50
+
51
+ @rem create the installer env
52
+ if not exist "%INSTALL_ENV_DIR%" (
53
+ echo Creating Conda Environment
54
+ call "%CONDA_ROOT_PREFIX%\_conda.exe" create --no-shortcuts -y -k --prefix "%INSTALL_ENV_DIR%" python=3.10 || ( echo. && echo ERROR: Conda environment creation failed. && goto end )
55
+ @rem check if conda environment was actually created
56
+ if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end )
57
+ @rem activate installer env
58
+ call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo ERROR: Miniconda hook not found. && goto end )
59
+ @rem Download insightface package
60
+ echo Downloading insightface package from %INSIGHTFACE_PACKAGE_URL% to %INSIGHTFACE_PACKAGE_PATH%
61
+ call curl -Lk "%INSIGHTFACE_PACKAGE_URL%" > "%INSIGHTFACE_PACKAGE_PATH%" || ( echo. && echo ERROR: Insightface package failed to download. && goto end )
62
+ @rem install insightface package using pip
63
+ echo Installing insightface package
64
+ call pip install "%INSIGHTFACE_PACKAGE_PATH%" || ( echo. && echo ERROR: Insightface package installation failed. && goto end )
65
+ )
66
+
67
+ @rem Download and install FFmpeg if not already installed
68
+ if "%ffmpeg_exists%" == "F" (
69
+ if not exist "%INSTALL_FFMPEG_DIR%" (
70
+ echo Downloading ffmpeg from %FFMPEG_DOWNLOAD_URL% to %INSTALL_DIR%
71
+ call curl -Lk "%FFMPEG_DOWNLOAD_URL%" > "%INSTALL_DIR%\ffmpeg.zip" || ( echo. && echo ffmpeg failed to download. && goto end )
72
+ call powershell -command "Expand-Archive -Force '%INSTALL_DIR%\ffmpeg.zip' '%INSTALL_DIR%\'"
73
+ cd "installer_files"
74
+ setlocal EnableExtensions EnableDelayedExpansion
75
+ for /f "tokens=*" %%f in ('dir /s /b /ad "ffmpeg\*"') do (
76
+ ren "%%f" "ffmpeg"
77
+ )
78
+ endlocal
79
+ setx PATH "%INSTALL_FFMPEG_DIR%\bin\;%PATH%"
80
+ echo To use videos, you need to restart roop after this installation.
81
+ cd ..
82
+ )
83
+ ) else (
84
+ echo Skipping FFmpeg installation as it is already available.
85
+ )
86
+
87
+ @rem setup installer env
88
+ @rem check if conda environment was actually created
89
+ if not exist "%INSTALL_ENV_DIR%\python.exe" ( echo. && echo ERROR: Conda environment is empty. && goto end )
90
+ @rem activate installer env
91
+ call "%CONDA_ROOT_PREFIX%\condabin\conda.bat" activate "%INSTALL_ENV_DIR%" || ( echo. && echo ERROR: Miniconda hook not found. && goto end )
92
+ echo Launching roop unleashed
93
+ call python installer.py %COMMANDLINE_ARGS%
94
+
95
+ echo.
96
+ echo Done!
97
+
98
+ :end
99
+ pause
mypy.ini ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ [mypy]
2
+ check_untyped_defs = True
3
+ disallow_any_generics = True
4
+ disallow_untyped_calls = True
5
+ disallow_untyped_defs = True
6
+ ignore_missing_imports = True
7
+ strict_optional = False
requirements.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu118
2
+
3
+ numpy==1.26.4
4
+ gradio==4.32.1
5
+ opencv-python==4.9.0.80
6
+ onnx==1.16.0
7
+ insightface==0.7.3
8
+ psutil==5.9.6
9
+ torch==2.1.2+cu118; sys_platform != 'darwin'
10
+ torch==2.1.2; sys_platform == 'darwin'
11
+ torchvision==0.16.2+cu118; sys_platform != 'darwin'
12
+ torchvision==0.16.2; sys_platform == 'darwin'
13
+ onnxruntime==1.17.1; sys_platform == 'darwin' and platform_machine != 'arm64'
14
+ onnxruntime-silicon==1.16.3; sys_platform == 'darwin' and platform_machine == 'arm64'
15
+ onnxruntime-gpu==1.17.1; sys_platform != 'darwin'
16
+ tqdm==4.66.4
17
+ ftfy
18
+ regex
19
+ pyvirtualcam
roop-unleashed.ipynb ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "gpuType": "T4",
8
+ "collapsed_sections": [
9
+ "UdQ1VHdI8lCf"
10
+ ]
11
+ },
12
+ "kernelspec": {
13
+ "name": "python3",
14
+ "display_name": "Python 3"
15
+ },
16
+ "language_info": {
17
+ "name": "python"
18
+ },
19
+ "accelerator": "GPU"
20
+ },
21
+ "cells": [
22
+ {
23
+ "cell_type": "markdown",
24
+ "source": [
25
+ "# Colab for roop-unleashed - Gradio version\n",
26
+ "https://github.com/C0untFloyd/roop-unleashed\n"
27
+ ],
28
+ "metadata": {
29
+ "id": "G9BdiCppV6AS"
30
+ }
31
+ },
32
+ {
33
+ "cell_type": "markdown",
34
+ "source": [
35
+ "Install CUDA V11.8 on Google Cloud Compute"
36
+ ],
37
+ "metadata": {
38
+ "id": "CanIXgLJgaOj"
39
+ }
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "source": [
44
+ "!apt-get -y update\n",
45
+ "!apt-get -y install cuda-toolkit-11-8\n",
46
+ "import os\n",
47
+ "os.environ[\"LD_LIBRARY_PATH\"] += \":\" + \"/usr/local/cuda-11/lib64\"\n",
48
+ "os.environ[\"LD_LIBRARY_PATH\"] += \":\" + \"/usr/local/cuda-11.8/lib64\""
49
+ ],
50
+ "metadata": {
51
+ "id": "96GE4UgYg3Ej"
52
+ },
53
+ "execution_count": null,
54
+ "outputs": []
55
+ },
56
+ {
57
+ "cell_type": "markdown",
58
+ "source": [
59
+ "Installing & preparing requirements"
60
+ ],
61
+ "metadata": {
62
+ "id": "0ZYRNb0AWLLW"
63
+ }
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": null,
68
+ "metadata": {
69
+ "id": "t1yPuhdySqCq"
70
+ },
71
+ "outputs": [],
72
+ "source": [
73
+ "!git clone https://github.com/C0untFloyd/roop-unleashed.git\n",
74
+ "%cd roop-unleashed\n",
75
+ "!mv config_colab.yaml config.yaml\n",
76
+ "!pip install pip install -r requirements.txt"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "markdown",
81
+ "source": [
82
+ "Running roop-unleashed with default config"
83
+ ],
84
+ "metadata": {
85
+ "id": "u_4JQiSlV9Fi"
86
+ }
87
+ },
88
+ {
89
+ "cell_type": "code",
90
+ "source": [
91
+ "!python run.py"
92
+ ],
93
+ "metadata": {
94
+ "id": "Is6U2huqSzLE"
95
+ },
96
+ "execution_count": null,
97
+ "outputs": []
98
+ },
99
+ {
100
+ "cell_type": "markdown",
101
+ "source": [
102
+ "### Download generated images folder\n",
103
+ "(only needed if you want to zip the generated output)"
104
+ ],
105
+ "metadata": {
106
+ "id": "UdQ1VHdI8lCf"
107
+ }
108
+ },
109
+ {
110
+ "cell_type": "code",
111
+ "source": [
112
+ "import shutil\n",
113
+ "import os\n",
114
+ "from google.colab import files\n",
115
+ "\n",
116
+ "def zip_directory(directory_path, zip_path):\n",
117
+ " shutil.make_archive(zip_path, 'zip', directory_path)\n",
118
+ "\n",
119
+ "# Set the directory path you want to download\n",
120
+ "directory_path = '/content/roop-unleashed/output'\n",
121
+ "\n",
122
+ "# Set the zip file name\n",
123
+ "zip_filename = 'fake_output.zip'\n",
124
+ "\n",
125
+ "# Zip the directory\n",
126
+ "zip_directory(directory_path, zip_filename)\n",
127
+ "\n",
128
+ "# Download the zip file\n",
129
+ "files.download(zip_filename+'.zip')\n"
130
+ ],
131
+ "metadata": {
132
+ "colab": {
133
+ "base_uri": "https://localhost:8080/",
134
+ "height": 17
135
+ },
136
+ "id": "oYjWveAmw10X",
137
+ "outputId": "5b4c3650-f951-434a-c650-5525a8a70c1e"
138
+ },
139
+ "execution_count": null,
140
+ "outputs": [
141
+ {
142
+ "output_type": "display_data",
143
+ "data": {
144
+ "text/plain": [
145
+ "<IPython.core.display.Javascript object>"
146
+ ],
147
+ "application/javascript": [
148
+ "\n",
149
+ " async function download(id, filename, size) {\n",
150
+ " if (!google.colab.kernel.accessAllowed) {\n",
151
+ " return;\n",
152
+ " }\n",
153
+ " const div = document.createElement('div');\n",
154
+ " const label = document.createElement('label');\n",
155
+ " label.textContent = `Downloading \"${filename}\": `;\n",
156
+ " div.appendChild(label);\n",
157
+ " const progress = document.createElement('progress');\n",
158
+ " progress.max = size;\n",
159
+ " div.appendChild(progress);\n",
160
+ " document.body.appendChild(div);\n",
161
+ "\n",
162
+ " const buffers = [];\n",
163
+ " let downloaded = 0;\n",
164
+ "\n",
165
+ " const channel = await google.colab.kernel.comms.open(id);\n",
166
+ " // Send a message to notify the kernel that we're ready.\n",
167
+ " channel.send({})\n",
168
+ "\n",
169
+ " for await (const message of channel.messages) {\n",
170
+ " // Send a message to notify the kernel that we're ready.\n",
171
+ " channel.send({})\n",
172
+ " if (message.buffers) {\n",
173
+ " for (const buffer of message.buffers) {\n",
174
+ " buffers.push(buffer);\n",
175
+ " downloaded += buffer.byteLength;\n",
176
+ " progress.value = downloaded;\n",
177
+ " }\n",
178
+ " }\n",
179
+ " }\n",
180
+ " const blob = new Blob(buffers, {type: 'application/binary'});\n",
181
+ " const a = document.createElement('a');\n",
182
+ " a.href = window.URL.createObjectURL(blob);\n",
183
+ " a.download = filename;\n",
184
+ " div.appendChild(a);\n",
185
+ " a.click();\n",
186
+ " div.remove();\n",
187
+ " }\n",
188
+ " "
189
+ ]
190
+ },
191
+ "metadata": {}
192
+ },
193
+ {
194
+ "output_type": "display_data",
195
+ "data": {
196
+ "text/plain": [
197
+ "<IPython.core.display.Javascript object>"
198
+ ],
199
+ "application/javascript": [
200
+ "download(\"download_789eab11-93d2-4880-adf3-6aceee0cc5f9\", \"fake_output.zip.zip\", 80125)"
201
+ ]
202
+ },
203
+ "metadata": {}
204
+ }
205
+ ]
206
+ }
207
+ ]
208
+ }
roop/FaceSet.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ class FaceSet:
4
+ faces = []
5
+ ref_images = []
6
+ embedding_average = 'None'
7
+ embeddings_backup = None
8
+
9
+ def __init__(self):
10
+ self.faces = []
11
+ self.ref_images = []
12
+ self.embeddings_backup = None
13
+
14
+ def AverageEmbeddings(self):
15
+ if len(self.faces) > 1 and self.embeddings_backup is None:
16
+ self.embeddings_backup = self.faces[0]['embedding']
17
+ embeddings = [face.embedding for face in self.faces]
18
+
19
+ self.faces[0]['embedding'] = np.mean(embeddings, axis=0)
20
+ # try median too?
roop/ProcessEntry.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ class ProcessEntry:
2
+ def __init__(self, filename: str, start: int, end: int, fps: float):
3
+ self.filename = filename
4
+ self.finalname = None
5
+ self.startframe = start
6
+ self.endframe = end
7
+ self.fps = fps
roop/ProcessMgr.py ADDED
@@ -0,0 +1,702 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import numpy as np
4
+ import psutil
5
+
6
+ from enum import Enum
7
+ from roop.ProcessOptions import ProcessOptions
8
+
9
+ from roop.face_util import get_first_face, get_all_faces, rotate_image_180, rotate_anticlockwise, rotate_clockwise, clamp_cut_values
10
+ from roop.utilities import compute_cosine_distance, get_device, str_to_class
11
+ import roop.vr_util as vr
12
+
13
+ from typing import Any, List, Callable
14
+ from roop.typing import Frame, Face
15
+ from concurrent.futures import ThreadPoolExecutor, as_completed
16
+ from threading import Thread, Lock
17
+ from queue import Queue
18
+ from tqdm import tqdm
19
+ from roop.ffmpeg_writer import FFMPEG_VideoWriter
20
+ import roop.globals
21
+
22
+
23
+ # Poor man's enum to be able to compare to int
24
+ class eNoFaceAction():
25
+ USE_ORIGINAL_FRAME = 0
26
+ RETRY_ROTATED = 1
27
+ SKIP_FRAME = 2
28
+ SKIP_FRAME_IF_DISSIMILAR = 3
29
+
30
+
31
+
32
+ def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
33
+ queue: Queue[str] = Queue()
34
+ for frame_path in temp_frame_paths:
35
+ queue.put(frame_path)
36
+ return queue
37
+
38
+
39
+ def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
40
+ queues = []
41
+ for _ in range(queue_per_future):
42
+ if not queue.empty():
43
+ queues.append(queue.get())
44
+ return queues
45
+
46
+
47
+ class ProcessMgr():
48
+ input_face_datas = []
49
+ target_face_datas = []
50
+
51
+ imagemask = None
52
+
53
+ processors = []
54
+ options : ProcessOptions = None
55
+
56
+ num_threads = 1
57
+ current_index = 0
58
+ processing_threads = 1
59
+ buffer_wait_time = 0.1
60
+
61
+ lock = Lock()
62
+
63
+ frames_queue = None
64
+ processed_queue = None
65
+
66
+ videowriter= None
67
+
68
+ progress_gradio = None
69
+ total_frames = 0
70
+
71
+
72
+
73
+
74
+ plugins = {
75
+ 'faceswap' : 'FaceSwapInsightFace',
76
+ 'mask_clip2seg' : 'Mask_Clip2Seg',
77
+ 'mask_xseg' : 'Mask_XSeg',
78
+ 'codeformer' : 'Enhance_CodeFormer',
79
+ 'gfpgan' : 'Enhance_GFPGAN',
80
+ 'dmdnet' : 'Enhance_DMDNet',
81
+ 'gpen' : 'Enhance_GPEN',
82
+ 'restoreformer++' : 'Enhance_RestoreFormerPPlus',
83
+ 'colorizer' : 'Frame_Colorizer',
84
+ 'filter_generic' : 'Frame_Filter',
85
+ 'removebg' : 'Frame_Masking',
86
+ 'upscale' : 'Frame_Upscale'
87
+ }
88
+
89
+ def __init__(self, progress):
90
+ if progress is not None:
91
+ self.progress_gradio = progress
92
+
93
+ def reuseOldProcessor(self, name:str):
94
+ for p in self.processors:
95
+ if p.processorname == name:
96
+ return p
97
+
98
+ return None
99
+
100
+
101
+ def initialize(self, input_faces, target_faces, options):
102
+ self.input_face_datas = input_faces
103
+ self.target_face_datas = target_faces
104
+ self.options = options
105
+ devicename = get_device()
106
+
107
+ roop.globals.g_desired_face_analysis=["landmark_3d_68", "landmark_2d_106","detection","recognition"]
108
+ if options.swap_mode == "all_female" or options.swap_mode == "all_male":
109
+ roop.globals.g_desired_face_analysis.append("genderage")
110
+
111
+ for p in self.processors:
112
+ newp = next((x for x in options.processors.keys() if x == p.processorname), None)
113
+ if newp is None:
114
+ p.Release()
115
+ del p
116
+
117
+ newprocessors = []
118
+ for key, extoption in options.processors.items():
119
+ p = self.reuseOldProcessor(key)
120
+ if p is None:
121
+ classname = self.plugins[key]
122
+ module = 'roop.processors.' + classname
123
+ p = str_to_class(module, classname)
124
+ if p is not None:
125
+ extoption.update({"devicename": devicename})
126
+ p.Initialize(extoption)
127
+ newprocessors.append(p)
128
+ else:
129
+ print(f"Not using {module}")
130
+ self.processors = newprocessors
131
+
132
+
133
+
134
+ if isinstance(self.options.imagemask, dict) and self.options.imagemask.get("layers") and len(self.options.imagemask["layers"]) > 0:
135
+ self.options.imagemask = self.options.imagemask.get("layers")[0]
136
+ # Get rid of alpha
137
+ self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_RGBA2GRAY)
138
+ if np.any(self.options.imagemask):
139
+ mo = self.input_face_datas[0].faces[0].mask_offsets
140
+ self.options.imagemask = self.blur_area(self.options.imagemask, mo[4], mo[5])
141
+ self.options.imagemask = self.options.imagemask.astype(np.float32) / 255
142
+ self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_GRAY2RGB)
143
+ else:
144
+ self.options.imagemask = None
145
+
146
+ self.options.frame_processing = False
147
+ for p in self.processors:
148
+ if p.type.startswith("frame_"):
149
+ self.options.frame_processing = True
150
+
151
+
152
+
153
+
154
+
155
+
156
+ def run_batch(self, source_files, target_files, threads:int = 1):
157
+ progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
158
+ self.total_frames = len(source_files)
159
+ self.num_threads = threads
160
+ with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
161
+ with ThreadPoolExecutor(max_workers=threads) as executor:
162
+ futures = []
163
+ queue = create_queue(source_files)
164
+ queue_per_future = max(len(source_files) // threads, 1)
165
+ while not queue.empty():
166
+ future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
167
+ futures.append(future)
168
+ for future in as_completed(futures):
169
+ future.result()
170
+
171
+
172
+ def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
173
+ for f in current_files:
174
+ if not roop.globals.processing:
175
+ return
176
+
177
+ # Decode the byte array into an OpenCV image
178
+ temp_frame = cv2.imdecode(np.fromfile(f, dtype=np.uint8), cv2.IMREAD_COLOR)
179
+ if temp_frame is not None:
180
+ if self.options.frame_processing:
181
+ for p in self.processors:
182
+ frame = p.Run(temp_frame)
183
+ resimg = frame
184
+ else:
185
+ resimg = self.process_frame(temp_frame)
186
+ if resimg is not None:
187
+ i = source_files.index(f)
188
+ cv2.imwrite(target_files[i], resimg)
189
+ if update:
190
+ update()
191
+
192
+
193
+
194
+ def read_frames_thread(self, cap, frame_start, frame_end, num_threads):
195
+ num_frame = 0
196
+ total_num = frame_end - frame_start
197
+ if frame_start > 0:
198
+ cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start)
199
+
200
+ while True and roop.globals.processing:
201
+ ret, frame = cap.read()
202
+ if not ret:
203
+ break
204
+
205
+ self.frames_queue[num_frame % num_threads].put(frame, block=True)
206
+ num_frame += 1
207
+ if num_frame == total_num:
208
+ break
209
+
210
+ for i in range(num_threads):
211
+ self.frames_queue[i].put(None)
212
+
213
+
214
+
215
+ def process_videoframes(self, threadindex, progress) -> None:
216
+ while True:
217
+ frame = self.frames_queue[threadindex].get()
218
+ if frame is None:
219
+ self.processing_threads -= 1
220
+ self.processed_queue[threadindex].put((False, None))
221
+ return
222
+ else:
223
+ if self.options.frame_processing:
224
+ for p in self.processors:
225
+ frame = p.Run(frame)
226
+ resimg = frame
227
+ else:
228
+ resimg = self.process_frame(frame)
229
+ self.processed_queue[threadindex].put((True, resimg))
230
+ del frame
231
+ progress()
232
+
233
+
234
+ def write_frames_thread(self):
235
+ nextindex = 0
236
+ num_producers = self.num_threads
237
+
238
+ while True:
239
+ process, frame = self.processed_queue[nextindex % self.num_threads].get()
240
+ nextindex += 1
241
+ if frame is not None:
242
+ self.videowriter.write_frame(frame)
243
+ del frame
244
+ elif process == False:
245
+ num_producers -= 1
246
+ if num_producers < 1:
247
+ return
248
+
249
+
250
+
251
+ def run_batch_inmem(self, source_video, target_video, frame_start, frame_end, fps, threads:int = 1, skip_audio=False):
252
+ cap = cv2.VideoCapture(source_video)
253
+ # frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
254
+ frame_count = (frame_end - frame_start) + 1
255
+ width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
256
+ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
257
+
258
+ processed_resolution = None
259
+ for p in self.processors:
260
+ if hasattr(p, 'getProcessedResolution'):
261
+ processed_resolution = p.getProcessedResolution(width, height)
262
+ print(f"Processed resolution: {processed_resolution}")
263
+ if processed_resolution is not None:
264
+ width = processed_resolution[0]
265
+ height = processed_resolution[1]
266
+
267
+
268
+ self.total_frames = frame_count
269
+ self.num_threads = threads
270
+
271
+ self.processing_threads = self.num_threads
272
+ self.frames_queue = []
273
+ self.processed_queue = []
274
+ for _ in range(threads):
275
+ self.frames_queue.append(Queue(1))
276
+ self.processed_queue.append(Queue(1))
277
+
278
+ self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None)
279
+
280
+ readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads))
281
+ readthread.start()
282
+
283
+ writethread = Thread(target=self.write_frames_thread)
284
+ writethread.start()
285
+
286
+ progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
287
+ with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
288
+ with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor:
289
+ futures = []
290
+
291
+ for threadindex in range(threads):
292
+ future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress))
293
+ futures.append(future)
294
+
295
+ for future in as_completed(futures):
296
+ future.result()
297
+ # wait for the task to complete
298
+ readthread.join()
299
+ writethread.join()
300
+ cap.release()
301
+ self.videowriter.close()
302
+ self.frames_queue.clear()
303
+ self.processed_queue.clear()
304
+
305
+
306
+
307
+
308
+ def update_progress(self, progress: Any = None) -> None:
309
+ process = psutil.Process(os.getpid())
310
+ memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
311
+ progress.set_postfix({
312
+ 'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
313
+ 'execution_threads': self.num_threads
314
+ })
315
+ progress.update(1)
316
+ if self.progress_gradio is not None:
317
+ self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames')
318
+
319
+
320
+ # https://github.com/deepinsight/insightface#third-party-re-implementation-of-arcface
321
+ # https://github.com/deepinsight/insightface/blob/master/alignment/coordinate_reg/image_infer.py
322
+ # https://github.com/deepinsight/insightface/issues/1350
323
+ # https://github.com/linghu8812/tensorrt_inference
324
+
325
+
326
+ def process_frame(self, frame:Frame):
327
+ if len(self.input_face_datas) < 1 and not self.options.show_face_masking:
328
+ return frame
329
+ temp_frame = frame.copy()
330
+ num_swapped, temp_frame = self.swap_faces(frame, temp_frame)
331
+ if num_swapped > 0:
332
+ if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME_IF_DISSIMILAR:
333
+ if len(self.input_face_datas) > num_swapped:
334
+ return None
335
+ return temp_frame
336
+ if roop.globals.no_face_action == eNoFaceAction.USE_ORIGINAL_FRAME:
337
+ return frame
338
+ if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME:
339
+ #This only works with in-mem processing, as it simply skips the frame.
340
+ #For 'extract frames' it simply leaves the unprocessed frame unprocessed and it gets used in the final output by ffmpeg.
341
+ #If we could delete that frame here, that'd work but that might cause ffmpeg to fail unless the frames are renamed, and I don't think we have the info on what frame it actually is?????
342
+ #alternatively, it could mark all the necessary frames for deletion, delete them at the end, then rename the remaining frames that might work?
343
+ return None
344
+ else:
345
+ return self.retry_rotated(frame)
346
+
347
+ def retry_rotated(self, frame):
348
+ copyframe = frame.copy()
349
+ copyframe = rotate_clockwise(copyframe)
350
+ temp_frame = copyframe.copy()
351
+ num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
352
+ if num_swapped > 0:
353
+ return rotate_anticlockwise(temp_frame)
354
+
355
+ copyframe = frame.copy()
356
+ copyframe = rotate_anticlockwise(copyframe)
357
+ temp_frame = copyframe.copy()
358
+ num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
359
+ if num_swapped > 0:
360
+ return rotate_clockwise(temp_frame)
361
+ del copyframe
362
+ return frame
363
+
364
+
365
+
366
+ def swap_faces(self, frame, temp_frame):
367
+ num_faces_found = 0
368
+
369
+ if self.options.swap_mode == "first":
370
+ face = get_first_face(frame)
371
+
372
+ if face is None:
373
+ return num_faces_found, frame
374
+
375
+ num_faces_found += 1
376
+ temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
377
+ else:
378
+ faces = get_all_faces(frame)
379
+ if faces is None:
380
+ return num_faces_found, frame
381
+
382
+ if self.options.swap_mode == "all":
383
+ for face in faces:
384
+ num_faces_found += 1
385
+ temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
386
+ del face
387
+
388
+ elif self.options.swap_mode == "selected":
389
+ num_targetfaces = len(self.target_face_datas)
390
+ use_index = num_targetfaces == 1
391
+ for i,tf in enumerate(self.target_face_datas):
392
+ for face in faces:
393
+ if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold:
394
+ if i < len(self.input_face_datas):
395
+ if use_index:
396
+ temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
397
+ else:
398
+ temp_frame = self.process_face(i, face, temp_frame)
399
+ num_faces_found += 1
400
+ del face
401
+ if not roop.globals.vr_mode and num_faces_found == num_targetfaces:
402
+ break
403
+ elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male":
404
+ gender = 'F' if self.options.swap_mode == "all_female" else 'M'
405
+ for face in faces:
406
+ if face.sex == gender:
407
+ num_faces_found += 1
408
+ temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
409
+ del face
410
+
411
+ if roop.globals.vr_mode and num_faces_found % 2 > 0:
412
+ # stereo image, there has to be an even number of faces
413
+ num_faces_found = 0
414
+ return num_faces_found, frame
415
+ if num_faces_found == 0:
416
+ return num_faces_found, frame
417
+
418
+ #maskprocessor = next((x for x in self.processors if x.type == 'mask'), None)
419
+
420
+ if self.options.imagemask is not None and self.options.imagemask.shape == frame.shape:
421
+ temp_frame = self.simple_blend_with_mask(temp_frame, frame, self.options.imagemask)
422
+ return num_faces_found, temp_frame
423
+
424
+
425
+ def rotation_action(self, original_face:Face, frame:Frame):
426
+ (height, width) = frame.shape[:2]
427
+
428
+ bounding_box_width = original_face.bbox[2] - original_face.bbox[0]
429
+ bounding_box_height = original_face.bbox[3] - original_face.bbox[1]
430
+ horizontal_face = bounding_box_width > bounding_box_height
431
+
432
+ center_x = width // 2.0
433
+ start_x = original_face.bbox[0]
434
+ end_x = original_face.bbox[2]
435
+ bbox_center_x = start_x + (bounding_box_width // 2.0)
436
+
437
+ # need to leverage the array of landmarks as decribed here:
438
+ # https://github.com/deepinsight/insightface/tree/master/alignment/coordinate_reg
439
+ # basically, we should be able to check for the relative position of eyes and nose
440
+ # then use that to determine which way the face is actually facing when in a horizontal position
441
+ # and use that to determine the correct rotation_action
442
+
443
+ forehead_x = original_face.landmark_2d_106[72][0]
444
+ chin_x = original_face.landmark_2d_106[0][0]
445
+
446
+ if horizontal_face:
447
+ if chin_x < forehead_x:
448
+ # this is someone lying down with their face like this (:
449
+ return "rotate_anticlockwise"
450
+ elif forehead_x < chin_x:
451
+ # this is someone lying down with their face like this :)
452
+ return "rotate_clockwise"
453
+ if bbox_center_x >= center_x:
454
+ # this is someone lying down with their face in the right hand side of the frame
455
+ return "rotate_anticlockwise"
456
+ if bbox_center_x < center_x:
457
+ # this is someone lying down with their face in the left hand side of the frame
458
+ return "rotate_clockwise"
459
+
460
+ return None
461
+
462
+
463
+ def auto_rotate_frame(self, original_face, frame:Frame):
464
+ target_face = original_face
465
+ original_frame = frame
466
+
467
+ rotation_action = self.rotation_action(original_face, frame)
468
+
469
+ if rotation_action == "rotate_anticlockwise":
470
+ #face is horizontal, rotating frame anti-clockwise and getting face bounding box from rotated frame
471
+ frame = rotate_anticlockwise(frame)
472
+ elif rotation_action == "rotate_clockwise":
473
+ #face is horizontal, rotating frame clockwise and getting face bounding box from rotated frame
474
+ frame = rotate_clockwise(frame)
475
+
476
+ return target_face, frame, rotation_action
477
+
478
+
479
+ def auto_unrotate_frame(self, frame:Frame, rotation_action):
480
+ if rotation_action == "rotate_anticlockwise":
481
+ return rotate_clockwise(frame)
482
+ elif rotation_action == "rotate_clockwise":
483
+ return rotate_anticlockwise(frame)
484
+
485
+ return frame
486
+
487
+
488
+
489
+ def process_face(self,face_index, target_face:Face, frame:Frame):
490
+ from roop.face_util import align_crop
491
+
492
+ enhanced_frame = None
493
+ if(len(self.input_face_datas) > 0):
494
+ inputface = self.input_face_datas[face_index].faces[0]
495
+ else:
496
+ inputface = None
497
+
498
+ rotation_action = None
499
+ if roop.globals.autorotate_faces:
500
+ # check for sideways rotation of face
501
+ rotation_action = self.rotation_action(target_face, frame)
502
+ if rotation_action is not None:
503
+ (startX, startY, endX, endY) = target_face["bbox"].astype("int")
504
+ width = endX - startX
505
+ height = endY - startY
506
+ offs = int(max(width,height) * 0.25)
507
+ rotcutframe,startX, startY, endX, endY = self.cutout(frame, startX - offs, startY - offs, endX + offs, endY + offs)
508
+ if rotation_action == "rotate_anticlockwise":
509
+ rotcutframe = rotate_anticlockwise(rotcutframe)
510
+ elif rotation_action == "rotate_clockwise":
511
+ rotcutframe = rotate_clockwise(rotcutframe)
512
+ # rotate image and re-detect face to correct wonky landmarks
513
+ rotface = get_first_face(rotcutframe)
514
+ if rotface is None:
515
+ rotation_action = None
516
+ else:
517
+ saved_frame = frame.copy()
518
+ frame = rotcutframe
519
+ target_face = rotface
520
+
521
+
522
+
523
+ # if roop.globals.vr_mode:
524
+ # bbox = target_face.bbox
525
+ # [orig_width, orig_height, _] = frame.shape
526
+
527
+ # # Convert bounding box to ints
528
+ # x1, y1, x2, y2 = map(int, bbox)
529
+
530
+ # # Determine the center of the bounding box
531
+ # x_center = (x1 + x2) / 2
532
+ # y_center = (y1 + y2) / 2
533
+
534
+ # # Normalize coordinates to range [-1, 1]
535
+ # x_center_normalized = x_center / (orig_width / 2) - 1
536
+ # y_center_normalized = y_center / (orig_width / 2) - 1
537
+
538
+ # # Convert normalized coordinates to spherical (theta, phi)
539
+ # theta = x_center_normalized * 180 # Theta ranges from -180 to 180 degrees
540
+ # phi = -y_center_normalized * 90 # Phi ranges from -90 to 90 degrees
541
+
542
+ # img = vr.GetPerspective(frame, 90, theta, phi, 1280, 1280) # Generate perspective image
543
+
544
+ fake_frame = None
545
+ aligned_img, M = align_crop(frame, target_face.kps, 128)
546
+ fake_frame = aligned_img
547
+ swap_frame = aligned_img
548
+ target_face.matrix = M
549
+ for p in self.processors:
550
+ if p.type == 'swap':
551
+ if inputface is not None:
552
+ for _ in range(0,self.options.num_swap_steps):
553
+ swap_frame = p.Run(inputface, target_face, swap_frame)
554
+ fake_frame = swap_frame
555
+ scale_factor = 0.0
556
+ elif p.type == 'mask':
557
+ fake_frame = self.process_mask(p, aligned_img, fake_frame)
558
+ else:
559
+ enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame)
560
+
561
+ upscale = 512
562
+ orig_width = fake_frame.shape[1]
563
+
564
+ fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC)
565
+ mask_offsets = (0,0,0,0,1,20) if inputface is None else inputface.mask_offsets
566
+
567
+
568
+ if enhanced_frame is None:
569
+ scale_factor = int(upscale / orig_width)
570
+ result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets)
571
+ else:
572
+ result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets)
573
+
574
+ if rotation_action is not None:
575
+ fake_frame = self.auto_unrotate_frame(result, rotation_action)
576
+ return self.paste_simple(fake_frame, saved_frame, startX, startY)
577
+
578
+ return result
579
+
580
+
581
+
582
+
583
+ def cutout(self, frame:Frame, start_x, start_y, end_x, end_y):
584
+ if start_x < 0:
585
+ start_x = 0
586
+ if start_y < 0:
587
+ start_y = 0
588
+ if end_x > frame.shape[1]:
589
+ end_x = frame.shape[1]
590
+ if end_y > frame.shape[0]:
591
+ end_y = frame.shape[0]
592
+ return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y
593
+
594
+ def paste_simple(self, src:Frame, dest:Frame, start_x, start_y):
595
+ end_x = start_x + src.shape[1]
596
+ end_y = start_y + src.shape[0]
597
+
598
+ start_x, end_x, start_y, end_y = clamp_cut_values(start_x, end_x, start_y, end_y, dest)
599
+ dest[start_y:end_y, start_x:end_x] = src
600
+ return dest
601
+
602
+ def simple_blend_with_mask(self, image1, image2, mask):
603
+ # Blend the images
604
+ blended_image = image1.astype(np.float32) * (1.0 - mask) + image2.astype(np.float32) * mask
605
+ return blended_image.astype(np.uint8)
606
+
607
+
608
+ def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets):
609
+ M_scale = M * scale_factor
610
+ IM = cv2.invertAffineTransform(M_scale)
611
+
612
+ face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8)
613
+ # Generate white square sized as a upsk_face
614
+ img_matte = np.zeros((upsk_face.shape[0],upsk_face.shape[1]), dtype=np.uint8)
615
+
616
+ w = img_matte.shape[1]
617
+ h = img_matte.shape[0]
618
+
619
+ top = int(mask_offsets[0] * h)
620
+ bottom = int(h - (mask_offsets[1] * h))
621
+ left = int(mask_offsets[2] * w)
622
+ right = int(w - (mask_offsets[3] * w))
623
+ img_matte[top:bottom,left:right] = 255
624
+
625
+ # Transform white square back to target_img
626
+ img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0)
627
+ ##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges)
628
+ img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0
629
+
630
+ img_matte = self.blur_area(img_matte, mask_offsets[4], mask_offsets[5])
631
+ #Normalize images to float values and reshape
632
+ img_matte = img_matte.astype(np.float32)/255
633
+ face_matte = face_matte.astype(np.float32)/255
634
+ img_matte = np.minimum(face_matte, img_matte)
635
+ if self.options.show_face_area_overlay:
636
+ # Additional steps for green overlay
637
+ green_overlay = np.zeros_like(target_img)
638
+ green_color = [0, 255, 0] # RGB for green
639
+ for i in range(3): # Apply green color where img_matte is not zero
640
+ green_overlay[:, :, i] = np.where(img_matte > 0, green_color[i], 0) ##Transform upcaled face back to target_img
641
+ img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1])
642
+ paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
643
+ if upsk_face is not fake_face:
644
+ fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
645
+ paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0)
646
+
647
+ # Re-assemble image
648
+ paste_face = img_matte * paste_face
649
+ paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32)
650
+ if self.options.show_face_area_overlay:
651
+ # Overlay the green overlay on the final image
652
+ paste_face = cv2.addWeighted(paste_face.astype(np.uint8), 1 - 0.5, green_overlay, 0.5, 0)
653
+ return paste_face.astype(np.uint8)
654
+
655
+
656
+ def blur_area(self, img_matte, num_erosion_iterations, blur_amount):
657
+ # Detect the affine transformed white area
658
+ mask_h_inds, mask_w_inds = np.where(img_matte==255)
659
+ # Calculate the size (and diagonal size) of transformed white area width and height boundaries
660
+ mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
661
+ mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
662
+ mask_size = int(np.sqrt(mask_h*mask_w))
663
+ # Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10))
664
+ # k = max(mask_size//12, 8)
665
+ k = max(mask_size//(blur_amount // 2) , blur_amount // 2)
666
+ kernel = np.ones((k,k),np.uint8)
667
+ img_matte = cv2.erode(img_matte,kernel,iterations = num_erosion_iterations)
668
+ #Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5))
669
+ # k = max(mask_size//24, 4)
670
+ k = max(mask_size//blur_amount, blur_amount//5)
671
+ kernel_size = (k, k)
672
+ blur_size = tuple(2*i+1 for i in kernel_size)
673
+ return cv2.GaussianBlur(img_matte, blur_size, 0)
674
+
675
+
676
+ def process_mask(self, processor, frame:Frame, target:Frame):
677
+ img_mask = processor.Run(frame, self.options.masking_text)
678
+ img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0]))
679
+ img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
680
+
681
+ if self.options.show_face_masking:
682
+ result = (1 - img_mask) * frame.astype(np.float32)
683
+ return np.uint8(result)
684
+
685
+
686
+ target = target.astype(np.float32)
687
+ result = (1-img_mask) * target
688
+ result += img_mask * frame.astype(np.float32)
689
+ return np.uint8(result)
690
+
691
+
692
+
693
+
694
+ def unload_models():
695
+ pass
696
+
697
+
698
+ def release_resources(self):
699
+ for p in self.processors:
700
+ p.Release()
701
+ self.processors.clear()
702
+
roop/ProcessOptions.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class ProcessOptions:
2
+
3
+ def __init__(self, processordefines:dict, face_distance, blend_ratio, swap_mode, selected_index, masking_text, imagemask, num_steps, show_face_area, show_mask=False):
4
+ self.processors = processordefines
5
+ self.face_distance_threshold = face_distance
6
+ self.blend_ratio = blend_ratio
7
+ self.swap_mode = swap_mode
8
+ self.selected_index = selected_index
9
+ self.masking_text = masking_text
10
+ self.imagemask = imagemask
11
+ self.num_swap_steps = num_steps
12
+ self.show_face_area_overlay = show_face_area
13
+ self.show_face_masking = show_mask
roop/__init__.py ADDED
File without changes
roop/capturer.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ import cv2
3
+ import numpy as np
4
+
5
+ from roop.typing import Frame
6
+
7
+ def get_image_frame(filename: str):
8
+ try:
9
+ return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR)
10
+ except:
11
+ print(f"Exception reading {filename}")
12
+ return None
13
+
14
+
15
+ def get_video_frame(video_path: str, frame_number: int = 0) -> Optional[Frame]:
16
+ capture = cv2.VideoCapture(video_path)
17
+ frame_total = capture.get(cv2.CAP_PROP_FRAME_COUNT)
18
+ capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1))
19
+ has_frame, frame = capture.read()
20
+ capture.release()
21
+ if has_frame:
22
+ return frame
23
+ return None
24
+
25
+
26
+ def get_video_frame_total(video_path: str) -> int:
27
+ capture = cv2.VideoCapture(video_path)
28
+ video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
29
+ capture.release()
30
+ return video_frame_total
roop/core.py ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ import os
4
+ import sys
5
+ import shutil
6
+ # single thread doubles cuda performance - needs to be set before torch import
7
+ if any(arg.startswith('--execution-provider') for arg in sys.argv):
8
+ os.environ['OMP_NUM_THREADS'] = '1'
9
+
10
+ import warnings
11
+ from typing import List
12
+ import platform
13
+ import signal
14
+ import torch
15
+ import onnxruntime
16
+ import pathlib
17
+
18
+ from time import time
19
+
20
+ import roop.globals
21
+ import roop.metadata
22
+ import roop.utilities as util
23
+ import roop.util_ffmpeg as ffmpeg
24
+ import ui.main as main
25
+ from settings import Settings
26
+ from roop.face_util import extract_face_images
27
+ from roop.ProcessEntry import ProcessEntry
28
+ from roop.ProcessMgr import ProcessMgr
29
+ from roop.ProcessOptions import ProcessOptions
30
+ from roop.capturer import get_video_frame_total
31
+
32
+
33
+ clip_text = None
34
+
35
+ call_display_ui = None
36
+
37
+ process_mgr = None
38
+
39
+
40
+ if 'ROCMExecutionProvider' in roop.globals.execution_providers:
41
+ del torch
42
+
43
+ warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
44
+ warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
45
+
46
+
47
+ def parse_args() -> None:
48
+ signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
49
+ roop.globals.headless = False
50
+ # Always enable all processors when using GUI
51
+ if len(sys.argv) > 1:
52
+ print('No CLI args supported - use Settings Tab instead')
53
+ roop.globals.frame_processors = ['face_swapper', 'face_enhancer']
54
+
55
+
56
+ def encode_execution_providers(execution_providers: List[str]) -> List[str]:
57
+ return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
58
+
59
+
60
+ def decode_execution_providers(execution_providers: List[str]) -> List[str]:
61
+ return [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()))
62
+ if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
63
+
64
+
65
+ def suggest_max_memory() -> int:
66
+ if platform.system().lower() == 'darwin':
67
+ return 4
68
+ return 16
69
+
70
+
71
+ def suggest_execution_providers() -> List[str]:
72
+ return encode_execution_providers(onnxruntime.get_available_providers())
73
+
74
+
75
+ def suggest_execution_threads() -> int:
76
+ if 'DmlExecutionProvider' in roop.globals.execution_providers:
77
+ return 1
78
+ if 'ROCMExecutionProvider' in roop.globals.execution_providers:
79
+ return 1
80
+ return 8
81
+
82
+
83
+ def limit_resources() -> None:
84
+ # limit memory usage
85
+ if roop.globals.max_memory:
86
+ memory = roop.globals.max_memory * 1024 ** 3
87
+ if platform.system().lower() == 'darwin':
88
+ memory = roop.globals.max_memory * 1024 ** 6
89
+ if platform.system().lower() == 'windows':
90
+ import ctypes
91
+ kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
92
+ kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
93
+ else:
94
+ import resource
95
+ resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
96
+
97
+
98
+
99
+ def release_resources() -> None:
100
+ import gc
101
+ global process_mgr
102
+
103
+ if process_mgr is not None:
104
+ process_mgr.release_resources()
105
+ process_mgr = None
106
+
107
+ gc.collect()
108
+ # if 'CUDAExecutionProvider' in roop.globals.execution_providers and torch.cuda.is_available():
109
+ # with torch.cuda.device('cuda'):
110
+ # torch.cuda.empty_cache()
111
+ # torch.cuda.ipc_collect()
112
+
113
+
114
+ def pre_check() -> bool:
115
+ if sys.version_info < (3, 9):
116
+ update_status('Python version is not supported - please upgrade to 3.9 or higher.')
117
+ return False
118
+
119
+ download_directory_path = util.resolve_relative_path('../models')
120
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx'])
121
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GFPGANv1.4.onnx'])
122
+ util.conditional_download(download_directory_path, ['https://github.com/csxmli2016/DMDNet/releases/download/v1/DMDNet.pth'])
123
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GPEN-BFR-512.onnx'])
124
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/restoreformer_plus_plus.onnx'])
125
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/xseg.onnx'])
126
+ download_directory_path = util.resolve_relative_path('../models/CLIP')
127
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/rd64-uni-refined.pth'])
128
+ download_directory_path = util.resolve_relative_path('../models/CodeFormer')
129
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/CodeFormerv0.1.onnx'])
130
+ download_directory_path = util.resolve_relative_path('../models/Frame')
131
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_artistic.onnx'])
132
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_stable.onnx'])
133
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/isnet-general-use.onnx'])
134
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x4.onnx'])
135
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x2.onnx'])
136
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/lsdir_x4.onnx'])
137
+
138
+ if not shutil.which('ffmpeg'):
139
+ update_status('ffmpeg is not installed.')
140
+ return True
141
+
142
+ def set_display_ui(function):
143
+ global call_display_ui
144
+
145
+ call_display_ui = function
146
+
147
+
148
+ def update_status(message: str) -> None:
149
+ global call_display_ui
150
+
151
+ print(message)
152
+ if call_display_ui is not None:
153
+ call_display_ui(message)
154
+
155
+
156
+
157
+
158
+ def start() -> None:
159
+ if roop.globals.headless:
160
+ print('Headless mode currently unsupported - starting UI!')
161
+ # faces = extract_face_images(roop.globals.source_path, (False, 0))
162
+ # roop.globals.INPUT_FACES.append(faces[roop.globals.source_face_index])
163
+ # faces = extract_face_images(roop.globals.target_path, (False, util.has_image_extension(roop.globals.target_path)))
164
+ # roop.globals.TARGET_FACES.append(faces[roop.globals.target_face_index])
165
+ # if 'face_enhancer' in roop.globals.frame_processors:
166
+ # roop.globals.selected_enhancer = 'GFPGAN'
167
+
168
+ batch_process_regular(None, False, None)
169
+
170
+
171
+ def get_processing_plugins(masking_engine):
172
+ processors = { "faceswap": {}}
173
+ if masking_engine is not None:
174
+ processors.update({masking_engine: {}})
175
+
176
+ if roop.globals.selected_enhancer == 'GFPGAN':
177
+ processors.update({"gfpgan": {}})
178
+ elif roop.globals.selected_enhancer == 'Codeformer':
179
+ processors.update({"codeformer": {}})
180
+ elif roop.globals.selected_enhancer == 'DMDNet':
181
+ processors.update({"dmdnet": {}})
182
+ elif roop.globals.selected_enhancer == 'GPEN':
183
+ processors.update({"gpen": {}})
184
+ elif roop.globals.selected_enhancer == 'Restoreformer++':
185
+ processors.update({"restoreformer++": {}})
186
+ return processors
187
+
188
+
189
+ def live_swap(frame, options):
190
+ global process_mgr
191
+
192
+ if frame is None:
193
+ return frame
194
+
195
+ if process_mgr is None:
196
+ process_mgr = ProcessMgr(None)
197
+
198
+ # if len(roop.globals.INPUT_FACESETS) <= selected_index:
199
+ # selected_index = 0
200
+ process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
201
+ newframe = process_mgr.process_frame(frame)
202
+ if newframe is None:
203
+ return frame
204
+ return newframe
205
+
206
+
207
+ def batch_process_regular(files:list[ProcessEntry], masking_engine:str, new_clip_text:str, use_new_method, imagemask, num_swap_steps, progress, selected_index = 0) -> None:
208
+ global clip_text, process_mgr
209
+
210
+ release_resources()
211
+ limit_resources()
212
+ if process_mgr is None:
213
+ process_mgr = ProcessMgr(progress)
214
+ mask = imagemask["layers"][0] if imagemask is not None else None
215
+ if len(roop.globals.INPUT_FACESETS) <= selected_index:
216
+ selected_index = 0
217
+ options = ProcessOptions(get_processing_plugins(masking_engine), roop.globals.distance_threshold, roop.globals.blend_ratio, roop.globals.face_swap_mode, selected_index, new_clip_text, mask, num_swap_steps, False)
218
+ process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
219
+ batch_process(files, use_new_method)
220
+ return
221
+
222
+ def batch_process_with_options(files:list[ProcessEntry], options, progress):
223
+ global clip_text, process_mgr
224
+
225
+ release_resources()
226
+ limit_resources()
227
+ if process_mgr is None:
228
+ process_mgr = ProcessMgr(progress)
229
+ process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
230
+ roop.globals.keep_frames = False
231
+ roop.globals.wait_after_extraction = False
232
+ roop.globals.skip_audio = False
233
+ batch_process(files, True)
234
+
235
+
236
+
237
+ def batch_process(files:list[ProcessEntry], use_new_method) -> None:
238
+ global clip_text, process_mgr
239
+
240
+ roop.globals.processing = True
241
+
242
+ # limit threads for some providers
243
+ max_threads = suggest_execution_threads()
244
+ if max_threads == 1:
245
+ roop.globals.execution_threads = 1
246
+
247
+ imagefiles:list[ProcessEntry] = []
248
+ videofiles:list[ProcessEntry] = []
249
+
250
+ update_status('Sorting videos/images')
251
+
252
+
253
+ for index, f in enumerate(files):
254
+ fullname = f.filename
255
+ if util.has_image_extension(fullname):
256
+ destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'.{roop.globals.CFG.output_image_format}')
257
+ destination = util.replace_template(destination, index=index)
258
+ pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
259
+ f.finalname = destination
260
+ imagefiles.append(f)
261
+
262
+ elif util.is_video(fullname) or util.has_extension(fullname, ['gif']):
263
+ destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'__temp.{roop.globals.CFG.output_video_format}')
264
+ f.finalname = destination
265
+ videofiles.append(f)
266
+
267
+
268
+
269
+ if(len(imagefiles) > 0):
270
+ update_status('Processing image(s)')
271
+ origimages = []
272
+ fakeimages = []
273
+ for f in imagefiles:
274
+ origimages.append(f.filename)
275
+ fakeimages.append(f.finalname)
276
+
277
+ process_mgr.run_batch(origimages, fakeimages, roop.globals.execution_threads)
278
+ origimages.clear()
279
+ fakeimages.clear()
280
+
281
+ if(len(videofiles) > 0):
282
+ for index,v in enumerate(videofiles):
283
+ if not roop.globals.processing:
284
+ end_processing('Processing stopped!')
285
+ return
286
+ fps = v.fps if v.fps > 0 else util.detect_fps(v.filename)
287
+ if v.endframe == 0:
288
+ v.endframe = get_video_frame_total(v.filename)
289
+
290
+ update_status(f'Creating {os.path.basename(v.finalname)} with {fps} FPS...')
291
+ start_processing = time()
292
+ if roop.globals.keep_frames or not use_new_method:
293
+ util.create_temp(v.filename)
294
+ update_status('Extracting frames...')
295
+ ffmpeg.extract_frames(v.filename,v.startframe,v.endframe, fps)
296
+ if not roop.globals.processing:
297
+ end_processing('Processing stopped!')
298
+ return
299
+
300
+ temp_frame_paths = util.get_temp_frame_paths(v.filename)
301
+ process_mgr.run_batch(temp_frame_paths, temp_frame_paths, roop.globals.execution_threads)
302
+ if not roop.globals.processing:
303
+ end_processing('Processing stopped!')
304
+ return
305
+ if roop.globals.wait_after_extraction:
306
+ extract_path = os.path.dirname(temp_frame_paths[0])
307
+ util.open_folder(extract_path)
308
+ input("Press any key to continue...")
309
+ print("Resorting frames to create video")
310
+ util.sort_rename_frames(extract_path)
311
+
312
+ ffmpeg.create_video(v.filename, v.finalname, fps)
313
+ if not roop.globals.keep_frames:
314
+ util.delete_temp_frames(temp_frame_paths[0])
315
+ else:
316
+ if util.has_extension(v.filename, ['gif']):
317
+ skip_audio = True
318
+ else:
319
+ skip_audio = roop.globals.skip_audio
320
+ process_mgr.run_batch_inmem(v.filename, v.finalname, v.startframe, v.endframe, fps,roop.globals.execution_threads, skip_audio)
321
+
322
+ if not roop.globals.processing:
323
+ end_processing('Processing stopped!')
324
+ return
325
+
326
+ video_file_name = v.finalname
327
+ if os.path.isfile(video_file_name):
328
+ destination = ''
329
+ if util.has_extension(v.filename, ['gif']):
330
+ gifname = util.get_destfilename_from_path(v.filename, roop.globals.output_path, '.gif')
331
+ destination = util.replace_template(gifname, index=index)
332
+ pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
333
+
334
+ update_status('Creating final GIF')
335
+ ffmpeg.create_gif_from_video(video_file_name, destination)
336
+ if os.path.isfile(destination):
337
+ os.remove(video_file_name)
338
+ else:
339
+ skip_audio = roop.globals.skip_audio
340
+ destination = util.replace_template(video_file_name, index=index)
341
+ pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
342
+
343
+ if not skip_audio:
344
+ ffmpeg.restore_audio(video_file_name, v.filename, v.startframe, v.endframe, destination)
345
+ if os.path.isfile(destination):
346
+ os.remove(video_file_name)
347
+ else:
348
+ shutil.move(video_file_name, destination)
349
+ update_status(f'\nProcessing {os.path.basename(destination)} took {time() - start_processing} secs')
350
+
351
+ else:
352
+ update_status(f'Failed processing {os.path.basename(v.finalname)}!')
353
+ end_processing('Finished')
354
+
355
+
356
+ def end_processing(msg:str):
357
+ update_status(msg)
358
+ roop.globals.target_folder_path = None
359
+ release_resources()
360
+
361
+
362
+ def destroy() -> None:
363
+ if roop.globals.target_path:
364
+ util.clean_temp(roop.globals.target_path)
365
+ release_resources()
366
+ sys.exit()
367
+
368
+
369
+ def run() -> None:
370
+ parse_args()
371
+ if not pre_check():
372
+ return
373
+ roop.globals.CFG = Settings('config.yaml')
374
+ roop.globals.execution_threads = roop.globals.CFG.max_threads
375
+ roop.globals.video_encoder = roop.globals.CFG.output_video_codec
376
+ roop.globals.video_quality = roop.globals.CFG.video_quality
377
+ roop.globals.max_memory = roop.globals.CFG.memory_limit if roop.globals.CFG.memory_limit > 0 else None
378
+ main.run()
roop/face_util.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import threading
2
+ from typing import Any
3
+ import insightface
4
+
5
+ import roop.globals
6
+ from roop.typing import Frame, Face
7
+
8
+ import cv2
9
+ import numpy as np
10
+ from skimage import transform as trans
11
+ from roop.capturer import get_video_frame
12
+ from roop.utilities import resolve_relative_path, conditional_download
13
+
14
+ FACE_ANALYSER = None
15
+ THREAD_LOCK_ANALYSER = threading.Lock()
16
+ THREAD_LOCK_SWAPPER = threading.Lock()
17
+ FACE_SWAPPER = None
18
+
19
+
20
+ def get_face_analyser() -> Any:
21
+ global FACE_ANALYSER
22
+
23
+ with THREAD_LOCK_ANALYSER:
24
+ if FACE_ANALYSER is None or roop.globals.g_current_face_analysis != roop.globals.g_desired_face_analysis:
25
+ model_path = resolve_relative_path('..')
26
+ # removed genderage
27
+ allowed_modules = roop.globals.g_desired_face_analysis
28
+ roop.globals.g_current_face_analysis = roop.globals.g_desired_face_analysis
29
+ if roop.globals.CFG.force_cpu:
30
+ print("Forcing CPU for Face Analysis")
31
+ FACE_ANALYSER = insightface.app.FaceAnalysis(
32
+ name="buffalo_l",
33
+ root=model_path, providers=["CPUExecutionProvider"],allowed_modules=allowed_modules
34
+ )
35
+ else:
36
+ FACE_ANALYSER = insightface.app.FaceAnalysis(
37
+ name="buffalo_l", root=model_path, providers=roop.globals.execution_providers,allowed_modules=allowed_modules
38
+ )
39
+ FACE_ANALYSER.prepare(
40
+ ctx_id=0,
41
+ det_size=(640, 640) if roop.globals.default_det_size else (320, 320),
42
+ )
43
+ return FACE_ANALYSER
44
+
45
+
46
+ def get_first_face(frame: Frame) -> Any:
47
+ try:
48
+ faces = get_face_analyser().get(frame)
49
+ return min(faces, key=lambda x: x.bbox[0])
50
+ # return sorted(faces, reverse=True, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[0]
51
+ except:
52
+ return None
53
+
54
+
55
+ def get_all_faces(frame: Frame) -> Any:
56
+ try:
57
+ faces = get_face_analyser().get(frame)
58
+ return sorted(faces, key=lambda x: x.bbox[0])
59
+ except:
60
+ return None
61
+
62
+
63
+ def extract_face_images(source_filename, video_info, extra_padding=-1.0):
64
+ face_data = []
65
+ source_image = None
66
+
67
+ if video_info[0]:
68
+ frame = get_video_frame(source_filename, video_info[1])
69
+ if frame is not None:
70
+ source_image = frame
71
+ else:
72
+ return face_data
73
+ else:
74
+ source_image = cv2.imdecode(np.fromfile(source_filename, dtype=np.uint8), cv2.IMREAD_COLOR)
75
+
76
+ faces = get_all_faces(source_image)
77
+ if faces is None:
78
+ return face_data
79
+
80
+ i = 0
81
+ for face in faces:
82
+ (startX, startY, endX, endY) = face["bbox"].astype("int")
83
+ startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image)
84
+ if extra_padding > 0.0:
85
+ if source_image.shape[:2] == (512, 512):
86
+ i += 1
87
+ face_data.append([face, source_image])
88
+ continue
89
+
90
+ found = False
91
+ for i in range(1, 3):
92
+ (startX, startY, endX, endY) = face["bbox"].astype("int")
93
+ startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image)
94
+ cutout_padding = extra_padding
95
+ # top needs extra room for detection
96
+ padding = int((endY - startY) * cutout_padding)
97
+ oldY = startY
98
+ startY -= padding
99
+
100
+ factor = 0.25 if i == 1 else 0.5
101
+ cutout_padding = factor
102
+ padding = int((endY - oldY) * cutout_padding)
103
+ endY += padding
104
+ padding = int((endX - startX) * cutout_padding)
105
+ startX -= padding
106
+ endX += padding
107
+ startX, endX, startY, endY = clamp_cut_values(
108
+ startX, endX, startY, endY, source_image
109
+ )
110
+ face_temp = source_image[startY:endY, startX:endX]
111
+ face_temp = resize_image_keep_content(face_temp)
112
+ testfaces = get_all_faces(face_temp)
113
+ if testfaces is not None and len(testfaces) > 0:
114
+ i += 1
115
+ face_data.append([testfaces[0], face_temp])
116
+ found = True
117
+ break
118
+
119
+ if not found:
120
+ print("No face found after resizing, this shouldn't happen!")
121
+ continue
122
+
123
+ face_temp = source_image[startY:endY, startX:endX]
124
+ if face_temp.size < 1:
125
+ continue
126
+
127
+ i += 1
128
+ face_data.append([face, face_temp])
129
+ return face_data
130
+
131
+
132
+ def clamp_cut_values(startX, endX, startY, endY, image):
133
+ if startX < 0:
134
+ startX = 0
135
+ if endX > image.shape[1]:
136
+ endX = image.shape[1]
137
+ if startY < 0:
138
+ startY = 0
139
+ if endY > image.shape[0]:
140
+ endY = image.shape[0]
141
+ return startX, endX, startY, endY
142
+
143
+
144
+
145
+ def face_offset_top(face: Face, offset):
146
+ face["bbox"][1] += offset
147
+ face["bbox"][3] += offset
148
+ lm106 = face.landmark_2d_106
149
+ add = np.full_like(lm106, [0, offset])
150
+ face["landmark_2d_106"] = lm106 + add
151
+ return face
152
+
153
+
154
+ def resize_image_keep_content(image, new_width=512, new_height=512):
155
+ dim = None
156
+ (h, w) = image.shape[:2]
157
+ if h > w:
158
+ r = new_height / float(h)
159
+ dim = (int(w * r), new_height)
160
+ else:
161
+ # Calculate the ratio of the width and construct the dimensions
162
+ r = new_width / float(w)
163
+ dim = (new_width, int(h * r))
164
+ image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
165
+ (h, w) = image.shape[:2]
166
+ if h == new_height and w == new_width:
167
+ return image
168
+ resize_img = np.zeros(shape=(new_height, new_width, 3), dtype=image.dtype)
169
+ offs = (new_width - w) if h == new_height else (new_height - h)
170
+ startoffs = int(offs // 2) if offs % 2 == 0 else int(offs // 2) + 1
171
+ offs = int(offs // 2)
172
+
173
+ if h == new_height:
174
+ resize_img[0:new_height, startoffs : new_width - offs] = image
175
+ else:
176
+ resize_img[startoffs : new_height - offs, 0:new_width] = image
177
+ return resize_img
178
+
179
+
180
+ def rotate_image_90(image, rotate=True):
181
+ if rotate:
182
+ return np.rot90(image)
183
+ else:
184
+ return np.rot90(image, 1, (1, 0))
185
+
186
+
187
+ def rotate_anticlockwise(frame):
188
+ return rotate_image_90(frame)
189
+
190
+
191
+ def rotate_clockwise(frame):
192
+ return rotate_image_90(frame, False)
193
+
194
+
195
+ def rotate_image_180(image):
196
+ return np.flip(image, 0)
197
+
198
+
199
+ # alignment code from insightface https://github.com/deepinsight/insightface/blob/master/python-package/insightface/utils/face_align.py
200
+
201
+ arcface_dst = np.array(
202
+ [
203
+ [38.2946, 51.6963],
204
+ [73.5318, 51.5014],
205
+ [56.0252, 71.7366],
206
+ [41.5493, 92.3655],
207
+ [70.7299, 92.2041],
208
+ ],
209
+ dtype=np.float32,
210
+ )
211
+
212
+
213
+ def estimate_norm(lmk, image_size=112, mode="arcface"):
214
+ assert lmk.shape == (5, 2)
215
+ assert image_size % 112 == 0 or image_size % 128 == 0
216
+ if image_size % 112 == 0:
217
+ ratio = float(image_size) / 112.0
218
+ diff_x = 0
219
+ else:
220
+ ratio = float(image_size) / 128.0
221
+ diff_x = 8.0 * ratio
222
+ dst = arcface_dst * ratio
223
+ dst[:, 0] += diff_x
224
+ tform = trans.SimilarityTransform()
225
+ tform.estimate(lmk, dst)
226
+ M = tform.params[0:2, :]
227
+ return M
228
+
229
+
230
+
231
+ # aligned, M = norm_crop2(f[1], face.kps, 512)
232
+ def align_crop(img, landmark, image_size=112, mode="arcface"):
233
+ M = estimate_norm(landmark, image_size, mode)
234
+ warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
235
+ return warped, M
236
+
237
+
238
+ def square_crop(im, S):
239
+ if im.shape[0] > im.shape[1]:
240
+ height = S
241
+ width = int(float(im.shape[1]) / im.shape[0] * S)
242
+ scale = float(S) / im.shape[0]
243
+ else:
244
+ width = S
245
+ height = int(float(im.shape[0]) / im.shape[1] * S)
246
+ scale = float(S) / im.shape[1]
247
+ resized_im = cv2.resize(im, (width, height))
248
+ det_im = np.zeros((S, S, 3), dtype=np.uint8)
249
+ det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im
250
+ return det_im, scale
251
+
252
+
253
+ def transform(data, center, output_size, scale, rotation):
254
+ scale_ratio = scale
255
+ rot = float(rotation) * np.pi / 180.0
256
+ # translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
257
+ t1 = trans.SimilarityTransform(scale=scale_ratio)
258
+ cx = center[0] * scale_ratio
259
+ cy = center[1] * scale_ratio
260
+ t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
261
+ t3 = trans.SimilarityTransform(rotation=rot)
262
+ t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2))
263
+ t = t1 + t2 + t3 + t4
264
+ M = t.params[0:2]
265
+ cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0)
266
+ return cropped, M
267
+
268
+
269
+ def trans_points2d(pts, M):
270
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
271
+ for i in range(pts.shape[0]):
272
+ pt = pts[i]
273
+ new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
274
+ new_pt = np.dot(M, new_pt)
275
+ # print('new_pt', new_pt.shape, new_pt)
276
+ new_pts[i] = new_pt[0:2]
277
+
278
+ return new_pts
279
+
280
+
281
+ def trans_points3d(pts, M):
282
+ scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
283
+ # print(scale)
284
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
285
+ for i in range(pts.shape[0]):
286
+ pt = pts[i]
287
+ new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
288
+ new_pt = np.dot(M, new_pt)
289
+ # print('new_pt', new_pt.shape, new_pt)
290
+ new_pts[i][0:2] = new_pt[0:2]
291
+ new_pts[i][2] = pts[i][2] * scale
292
+
293
+ return new_pts
294
+
295
+
296
+ def trans_points(pts, M):
297
+ if pts.shape[1] == 2:
298
+ return trans_points2d(pts, M)
299
+ else:
300
+ return trans_points3d(pts, M)
301
+
302
+ def create_blank_image(width, height):
303
+ img = np.zeros((height, width, 4), dtype=np.uint8)
304
+ img[:] = [0,0,0,0]
305
+ return img
306
+
roop/ffmpeg_writer.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ FFMPEG_Writer - write set of frames to video file
3
+
4
+ original from
5
+ https://github.com/Zulko/moviepy/blob/master/moviepy/video/io/ffmpeg_writer.py
6
+
7
+ removed unnecessary dependencies
8
+
9
+ The MIT License (MIT)
10
+
11
+ Copyright (c) 2015 Zulko
12
+ Copyright (c) 2023 Janvarev Vladislav
13
+ """
14
+
15
+ import os
16
+ import subprocess as sp
17
+
18
+ PIPE = -1
19
+ STDOUT = -2
20
+ DEVNULL = -3
21
+
22
+ FFMPEG_BINARY = "ffmpeg"
23
+
24
+ class FFMPEG_VideoWriter:
25
+ """ A class for FFMPEG-based video writing.
26
+
27
+ A class to write videos using ffmpeg. ffmpeg will write in a large
28
+ choice of formats.
29
+
30
+ Parameters
31
+ -----------
32
+
33
+ filename
34
+ Any filename like 'video.mp4' etc. but if you want to avoid
35
+ complications it is recommended to use the generic extension
36
+ '.avi' for all your videos.
37
+
38
+ size
39
+ Size (width,height) of the output video in pixels.
40
+
41
+ fps
42
+ Frames per second in the output video file.
43
+
44
+ codec
45
+ FFMPEG codec. It seems that in terms of quality the hierarchy is
46
+ 'rawvideo' = 'png' > 'mpeg4' > 'libx264'
47
+ 'png' manages the same lossless quality as 'rawvideo' but yields
48
+ smaller files. Type ``ffmpeg -codecs`` in a terminal to get a list
49
+ of accepted codecs.
50
+
51
+ Note for default 'libx264': by default the pixel format yuv420p
52
+ is used. If the video dimensions are not both even (e.g. 720x405)
53
+ another pixel format is used, and this can cause problem in some
54
+ video readers.
55
+
56
+ audiofile
57
+ Optional: The name of an audio file that will be incorporated
58
+ to the video.
59
+
60
+ preset
61
+ Sets the time that FFMPEG will take to compress the video. The slower,
62
+ the better the compression rate. Possibilities are: ultrafast,superfast,
63
+ veryfast, faster, fast, medium (default), slow, slower, veryslow,
64
+ placebo.
65
+
66
+ bitrate
67
+ Only relevant for codecs which accept a bitrate. "5000k" offers
68
+ nice results in general.
69
+
70
+ """
71
+
72
+ def __init__(self, filename, size, fps, codec="libx265", crf=14, audiofile=None,
73
+ preset="medium", bitrate=None,
74
+ logfile=None, threads=None, ffmpeg_params=None):
75
+
76
+ if logfile is None:
77
+ logfile = sp.PIPE
78
+
79
+ self.filename = filename
80
+ self.codec = codec
81
+ self.ext = self.filename.split(".")[-1]
82
+ w = size[0] - 1 if size[0] % 2 != 0 else size[0]
83
+ h = size[1] - 1 if size[1] % 2 != 0 else size[1]
84
+
85
+
86
+ # order is important
87
+ cmd = [
88
+ FFMPEG_BINARY,
89
+ '-hide_banner',
90
+ '-hwaccel', 'auto',
91
+ '-y',
92
+ '-loglevel', 'error' if logfile == sp.PIPE else 'info',
93
+ '-f', 'rawvideo',
94
+ '-vcodec', 'rawvideo',
95
+ '-s', '%dx%d' % (size[0], size[1]),
96
+ #'-pix_fmt', 'rgba' if withmask else 'rgb24',
97
+ '-pix_fmt', 'bgr24',
98
+ '-r', str(fps),
99
+ '-an', '-i', '-'
100
+ ]
101
+
102
+ if audiofile is not None:
103
+ cmd.extend([
104
+ '-i', audiofile,
105
+ '-acodec', 'copy'
106
+ ])
107
+
108
+ cmd.extend([
109
+ '-vcodec', codec,
110
+ '-crf', str(crf)
111
+ #'-preset', preset,
112
+ ])
113
+ if ffmpeg_params is not None:
114
+ cmd.extend(ffmpeg_params)
115
+ if bitrate is not None:
116
+ cmd.extend([
117
+ '-b', bitrate
118
+ ])
119
+
120
+ # scale to a resolution divisible by 2 if not even
121
+ cmd.extend(['-vf', f'scale={w}:{h}' if w != size[0] or h != size[1] else 'colorspace=bt709:iall=bt601-6-625:fast=1'])
122
+
123
+ if threads is not None:
124
+ cmd.extend(["-threads", str(threads)])
125
+
126
+ cmd.extend([
127
+ '-pix_fmt', 'yuv420p',
128
+
129
+ ])
130
+ cmd.extend([
131
+ filename
132
+ ])
133
+
134
+ test = str(cmd)
135
+ print(test)
136
+
137
+ popen_params = {"stdout": DEVNULL,
138
+ "stderr": logfile,
139
+ "stdin": sp.PIPE}
140
+
141
+ # This was added so that no extra unwanted window opens on windows
142
+ # when the child process is created
143
+ if os.name == "nt":
144
+ popen_params["creationflags"] = 0x08000000 # CREATE_NO_WINDOW
145
+
146
+ self.proc = sp.Popen(cmd, **popen_params)
147
+
148
+
149
+ def write_frame(self, img_array):
150
+ """ Writes one frame in the file."""
151
+ try:
152
+ #if PY3:
153
+ self.proc.stdin.write(img_array.tobytes())
154
+ # else:
155
+ # self.proc.stdin.write(img_array.tostring())
156
+ except IOError as err:
157
+ _, ffmpeg_error = self.proc.communicate()
158
+ error = (str(err) + ("\n\nroop unleashed error: FFMPEG encountered "
159
+ "the following error while writing file %s:"
160
+ "\n\n %s" % (self.filename, str(ffmpeg_error))))
161
+
162
+ if b"Unknown encoder" in ffmpeg_error:
163
+
164
+ error = error+("\n\nThe video export "
165
+ "failed because FFMPEG didn't find the specified "
166
+ "codec for video encoding (%s). Please install "
167
+ "this codec or change the codec when calling "
168
+ "write_videofile. For instance:\n"
169
+ " >>> clip.write_videofile('myvid.webm', codec='libvpx')")%(self.codec)
170
+
171
+ elif b"incorrect codec parameters ?" in ffmpeg_error:
172
+
173
+ error = error+("\n\nThe video export "
174
+ "failed, possibly because the codec specified for "
175
+ "the video (%s) is not compatible with the given "
176
+ "extension (%s). Please specify a valid 'codec' "
177
+ "argument in write_videofile. This would be 'libx264' "
178
+ "or 'mpeg4' for mp4, 'libtheora' for ogv, 'libvpx for webm. "
179
+ "Another possible reason is that the audio codec was not "
180
+ "compatible with the video codec. For instance the video "
181
+ "extensions 'ogv' and 'webm' only allow 'libvorbis' (default) as a"
182
+ "video codec."
183
+ )%(self.codec, self.ext)
184
+
185
+ elif b"encoder setup failed" in ffmpeg_error:
186
+
187
+ error = error+("\n\nThe video export "
188
+ "failed, possibly because the bitrate you specified "
189
+ "was too high or too low for the video codec.")
190
+
191
+ elif b"Invalid encoder type" in ffmpeg_error:
192
+
193
+ error = error + ("\n\nThe video export failed because the codec "
194
+ "or file extension you provided is not a video")
195
+
196
+
197
+ raise IOError(error)
198
+
199
+ def close(self):
200
+ if self.proc:
201
+ self.proc.stdin.close()
202
+ if self.proc.stderr is not None:
203
+ self.proc.stderr.close()
204
+ self.proc.wait()
205
+
206
+ self.proc = None
207
+
208
+ # Support the Context Manager protocol, to ensure that resources are cleaned up.
209
+
210
+ def __enter__(self):
211
+ return self
212
+
213
+ def __exit__(self, exc_type, exc_value, traceback):
214
+ self.close()
215
+
216
+
217
+
218
+
roop/globals.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from settings import Settings
2
+ from typing import List
3
+
4
+ source_path = None
5
+ target_path = None
6
+ output_path = None
7
+ target_folder_path = None
8
+
9
+ frame_processors: List[str] = []
10
+ keep_fps = None
11
+ keep_frames = None
12
+ autorotate_faces = None
13
+ vr_mode = None
14
+ skip_audio = None
15
+ wait_after_extraction = None
16
+ many_faces = None
17
+ use_batch = None
18
+ source_face_index = 0
19
+ target_face_index = 0
20
+ face_position = None
21
+ video_encoder = None
22
+ video_quality = None
23
+ max_memory = None
24
+ execution_providers: List[str] = []
25
+ execution_threads = None
26
+ headless = None
27
+ log_level = 'error'
28
+ selected_enhancer = None
29
+ face_swap_mode = None
30
+ blend_ratio = 0.5
31
+ distance_threshold = 0.65
32
+ default_det_size = True
33
+
34
+ no_face_action = 0
35
+
36
+ processing = False
37
+
38
+ g_current_face_analysis = None
39
+ g_desired_face_analysis = None
40
+
41
+ FACE_ENHANCER = None
42
+
43
+ INPUT_FACESETS = []
44
+ TARGET_FACES = []
45
+
46
+
47
+ IMAGE_CHAIN_PROCESSOR = None
48
+ VIDEO_CHAIN_PROCESSOR = None
49
+ BATCH_IMAGE_CHAIN_PROCESSOR = None
50
+
51
+ CFG: Settings = None
52
+
53
+
roop/metadata.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ name = 'roop unleashed'
2
+ version = '4.0.0'
roop/processors/Enhance_CodeFormer.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, List, Callable
2
+ import cv2
3
+ import numpy as np
4
+ import onnxruntime
5
+ import roop.globals
6
+
7
+ from roop.typing import Face, Frame, FaceSet
8
+ from roop.utilities import resolve_relative_path
9
+
10
+
11
+ # THREAD_LOCK = threading.Lock()
12
+
13
+
14
+ class Enhance_CodeFormer():
15
+ model_codeformer = None
16
+
17
+ plugin_options:dict = None
18
+
19
+ processorname = 'codeformer'
20
+ type = 'enhance'
21
+
22
+
23
+ def Initialize(self, plugin_options:dict):
24
+ if self.plugin_options is not None:
25
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
26
+ self.Release()
27
+
28
+ self.plugin_options = plugin_options
29
+ if self.model_codeformer is None:
30
+ # replace Mac mps with cpu for the moment
31
+ self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
32
+ model_path = resolve_relative_path('../models/CodeFormer/CodeFormerv0.1.onnx')
33
+ self.model_codeformer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
34
+ self.model_inputs = self.model_codeformer.get_inputs()
35
+ model_outputs = self.model_codeformer.get_outputs()
36
+ self.io_binding = self.model_codeformer.io_binding()
37
+ self.io_binding.bind_cpu_input(self.model_inputs[1].name, np.array([0.5]))
38
+ self.io_binding.bind_output(model_outputs[0].name, self.devicename)
39
+
40
+
41
+ def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
42
+ input_size = temp_frame.shape[1]
43
+ # preprocess
44
+ temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
45
+ temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
46
+ temp_frame = temp_frame.astype('float32') / 255.0
47
+ temp_frame = (temp_frame - 0.5) / 0.5
48
+ temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
49
+
50
+ self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame.astype(np.float32))
51
+ self.model_codeformer.run_with_iobinding(self.io_binding)
52
+ ort_outs = self.io_binding.copy_outputs_to_cpu()
53
+ result = ort_outs[0][0]
54
+ del ort_outs
55
+
56
+ # post-process
57
+ result = result.transpose((1, 2, 0))
58
+
59
+ un_min = -1.0
60
+ un_max = 1.0
61
+ result = np.clip(result, un_min, un_max)
62
+ result = (result - un_min) / (un_max - un_min)
63
+
64
+ result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
65
+ result = (result * 255.0).round()
66
+ scale_factor = int(result.shape[1] / input_size)
67
+ return result.astype(np.uint8), scale_factor
68
+
69
+
70
+ def Release(self):
71
+ del self.model_codeformer
72
+ self.model_codeformer = None
73
+ del self.io_binding
74
+ self.io_binding = None
75
+
roop/processors/Enhance_DMDNet.py ADDED
@@ -0,0 +1,898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, List, Callable
2
+ import cv2
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ import torch.nn.utils.spectral_norm as SpectralNorm
8
+ import threading
9
+ from torchvision.ops import roi_align
10
+
11
+ from math import sqrt
12
+
13
+ from torchvision.transforms.functional import normalize
14
+
15
+ from roop.typing import Face, Frame, FaceSet
16
+
17
+
18
+ THREAD_LOCK_DMDNET = threading.Lock()
19
+
20
+
21
+ class Enhance_DMDNet():
22
+ plugin_options:dict = None
23
+ model_dmdnet = None
24
+ torchdevice = None
25
+
26
+ processorname = 'dmdnet'
27
+ type = 'enhance'
28
+
29
+
30
+ def Initialize(self, plugin_options:dict):
31
+ if self.plugin_options is not None:
32
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
33
+ self.Release()
34
+
35
+ self.plugin_options = plugin_options
36
+ if self.model_dmdnet is None:
37
+ self.model_dmdnet = self.create(self.plugin_options["devicename"])
38
+
39
+
40
+ # temp_frame already cropped+aligned, bbox not
41
+ def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
42
+ input_size = temp_frame.shape[1]
43
+
44
+ result = self.enhance_face(source_faceset, temp_frame, target_face)
45
+ scale_factor = int(result.shape[1] / input_size)
46
+ return result.astype(np.uint8), scale_factor
47
+
48
+
49
+ def Release(self):
50
+ self.model_gfpgan = None
51
+
52
+
53
+ # https://stackoverflow.com/a/67174339
54
+ def landmarks106_to_68(self, pt106):
55
+ map106to68=[1,10,12,14,16,3,5,7,0,23,21,19,32,30,28,26,17,
56
+ 43,48,49,51,50,
57
+ 102,103,104,105,101,
58
+ 72,73,74,86,78,79,80,85,84,
59
+ 35,41,42,39,37,36,
60
+ 89,95,96,93,91,90,
61
+ 52,64,63,71,67,68,61,58,59,53,56,55,65,66,62,70,69,57,60,54
62
+ ]
63
+
64
+ pt68 = []
65
+ for i in range(68):
66
+ index = map106to68[i]
67
+ pt68.append(pt106[index])
68
+ return pt68
69
+
70
+
71
+
72
+
73
+ def check_bbox(self, imgs, boxes):
74
+ boxes = boxes.view(-1, 4, 4)
75
+ colors = [(0, 255, 0), (0, 255, 0), (255, 255, 0), (255, 0, 0)]
76
+ i = 0
77
+ for img, box in zip(imgs, boxes):
78
+ img = (img + 1)/2 * 255
79
+ img2 = img.permute(1, 2, 0).float().cpu().flip(2).numpy().copy()
80
+ for idx, point in enumerate(box):
81
+ cv2.rectangle(img2, (int(point[0]), int(point[1])), (int(point[2]), int(point[3])), color=colors[idx], thickness=2)
82
+ cv2.imwrite('dmdnet_{:02d}.png'.format(i), img2)
83
+ i += 1
84
+
85
+
86
+ def trans_points2d(self, pts, M):
87
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
88
+ for i in range(pts.shape[0]):
89
+ pt = pts[i]
90
+ new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
91
+ new_pt = np.dot(M, new_pt)
92
+ new_pts[i] = new_pt[0:2]
93
+
94
+ return new_pts
95
+
96
+
97
+ def enhance_face(self, ref_faceset: FaceSet, temp_frame, face: Face):
98
+ # preprocess
99
+ start_x, start_y, end_x, end_y = map(int, face['bbox'])
100
+ lm106 = face.landmark_2d_106
101
+ lq_landmarks = np.asarray(self.landmarks106_to_68(lm106))
102
+
103
+ if temp_frame.shape[0] != 512 or temp_frame.shape[1] != 512:
104
+ # scale to 512x512
105
+ scale_factor = 512 / temp_frame.shape[1]
106
+
107
+ M = face.matrix * scale_factor
108
+
109
+ lq_landmarks = self.trans_points2d(lq_landmarks, M)
110
+ temp_frame = cv2.resize(temp_frame, (512,512), interpolation = cv2.INTER_AREA)
111
+
112
+ if temp_frame.ndim == 2:
113
+ temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB) # GGG
114
+ # else:
115
+ # temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # RGB
116
+
117
+ lq = read_img_tensor(temp_frame)
118
+
119
+ LQLocs = get_component_location(lq_landmarks)
120
+ # self.check_bbox(lq, LQLocs.unsqueeze(0))
121
+
122
+ # specific, change 1000 to 1 to activate
123
+ if len(ref_faceset.faces) > 1:
124
+ SpecificImgs = []
125
+ SpecificLocs = []
126
+ for i,face in enumerate(ref_faceset.faces):
127
+ lm106 = face.landmark_2d_106
128
+ lq_landmarks = np.asarray(self.landmarks106_to_68(lm106))
129
+ ref_image = ref_faceset.ref_images[i]
130
+ if ref_image.shape[0] != 512 or ref_image.shape[1] != 512:
131
+ # scale to 512x512
132
+ scale_factor = 512 / ref_image.shape[1]
133
+
134
+ M = face.matrix * scale_factor
135
+
136
+ lq_landmarks = self.trans_points2d(lq_landmarks, M)
137
+ ref_image = cv2.resize(ref_image, (512,512), interpolation = cv2.INTER_AREA)
138
+
139
+ if ref_image.ndim == 2:
140
+ temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB) # GGG
141
+ # else:
142
+ # temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # RGB
143
+
144
+ ref_tensor = read_img_tensor(ref_image)
145
+ ref_locs = get_component_location(lq_landmarks)
146
+ # self.check_bbox(ref_tensor, ref_locs.unsqueeze(0))
147
+
148
+ SpecificImgs.append(ref_tensor)
149
+ SpecificLocs.append(ref_locs.unsqueeze(0))
150
+
151
+ SpecificImgs = torch.cat(SpecificImgs, dim=0)
152
+ SpecificLocs = torch.cat(SpecificLocs, dim=0)
153
+ # check_bbox(SpecificImgs, SpecificLocs)
154
+ SpMem256, SpMem128, SpMem64 = self.model_dmdnet.generate_specific_dictionary(sp_imgs = SpecificImgs.to(self.torchdevice), sp_locs = SpecificLocs)
155
+ SpMem256Para = {}
156
+ SpMem128Para = {}
157
+ SpMem64Para = {}
158
+ for k, v in SpMem256.items():
159
+ SpMem256Para[k] = v
160
+ for k, v in SpMem128.items():
161
+ SpMem128Para[k] = v
162
+ for k, v in SpMem64.items():
163
+ SpMem64Para[k] = v
164
+ else:
165
+ # generic
166
+ SpMem256Para, SpMem128Para, SpMem64Para = None, None, None
167
+
168
+ with torch.no_grad():
169
+ with THREAD_LOCK_DMDNET:
170
+ try:
171
+ GenericResult, SpecificResult = self.model_dmdnet(lq = lq.to(self.torchdevice), loc = LQLocs.unsqueeze(0), sp_256 = SpMem256Para, sp_128 = SpMem128Para, sp_64 = SpMem64Para)
172
+ except Exception as e:
173
+ print(f'Error {e} there may be something wrong with the detected component locations.')
174
+ return temp_frame
175
+
176
+ if SpecificResult is not None:
177
+ save_specific = SpecificResult * 0.5 + 0.5
178
+ save_specific = save_specific.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
179
+ save_specific = np.clip(save_specific.float().cpu().numpy(), 0, 1) * 255.0
180
+ temp_frame = save_specific.astype("uint8")
181
+ if False:
182
+ save_generic = GenericResult * 0.5 + 0.5
183
+ save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
184
+ save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0
185
+ check_lq = lq * 0.5 + 0.5
186
+ check_lq = check_lq.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
187
+ check_lq = np.clip(check_lq.float().cpu().numpy(), 0, 1) * 255.0
188
+ cv2.imwrite('dmdnet_comparison.png', cv2.cvtColor(np.hstack((check_lq, save_generic, save_specific)),cv2.COLOR_RGB2BGR))
189
+ else:
190
+ save_generic = GenericResult * 0.5 + 0.5
191
+ save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
192
+ save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0
193
+ temp_frame = save_generic.astype("uint8")
194
+ temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_RGB2BGR) # RGB
195
+ return temp_frame
196
+
197
+
198
+
199
+ def create(self, devicename):
200
+ self.torchdevice = torch.device(devicename)
201
+ model_dmdnet = DMDNet().to(self.torchdevice)
202
+ weights = torch.load('./models/DMDNet.pth')
203
+ model_dmdnet.load_state_dict(weights, strict=True)
204
+
205
+ model_dmdnet.eval()
206
+ num_params = 0
207
+ for param in model_dmdnet.parameters():
208
+ num_params += param.numel()
209
+ return model_dmdnet
210
+
211
+ # print('{:>8s} : {}'.format('Using device', device))
212
+ # print('{:>8s} : {:.2f}M'.format('Model params', num_params/1e6))
213
+
214
+
215
+
216
+ def read_img_tensor(Img=None): #rgb -1~1
217
+ Img = Img.transpose((2, 0, 1))/255.0
218
+ Img = torch.from_numpy(Img).float()
219
+ normalize(Img, [0.5,0.5,0.5], [0.5,0.5,0.5], inplace=True)
220
+ ImgTensor = Img.unsqueeze(0)
221
+ return ImgTensor
222
+
223
+
224
+ def get_component_location(Landmarks, re_read=False):
225
+ if re_read:
226
+ ReadLandmark = []
227
+ with open(Landmarks,'r') as f:
228
+ for line in f:
229
+ tmp = [float(i) for i in line.split(' ') if i != '\n']
230
+ ReadLandmark.append(tmp)
231
+ ReadLandmark = np.array(ReadLandmark) #
232
+ Landmarks = np.reshape(ReadLandmark, [-1, 2]) # 68*2
233
+ Map_LE_B = list(np.hstack((range(17,22), range(36,42))))
234
+ Map_RE_B = list(np.hstack((range(22,27), range(42,48))))
235
+ Map_LE = list(range(36,42))
236
+ Map_RE = list(range(42,48))
237
+ Map_NO = list(range(29,36))
238
+ Map_MO = list(range(48,68))
239
+
240
+ Landmarks[Landmarks>504]=504
241
+ Landmarks[Landmarks<8]=8
242
+
243
+ #left eye
244
+ Mean_LE = np.mean(Landmarks[Map_LE],0)
245
+ L_LE1 = Mean_LE[1] - np.min(Landmarks[Map_LE_B,1])
246
+ L_LE1 = L_LE1 * 1.3
247
+ L_LE2 = L_LE1 / 1.9
248
+ L_LE_xy = L_LE1 + L_LE2
249
+ L_LE_lt = [L_LE_xy/2, L_LE1]
250
+ L_LE_rb = [L_LE_xy/2, L_LE2]
251
+ Location_LE = np.hstack((Mean_LE - L_LE_lt + 1, Mean_LE + L_LE_rb)).astype(int)
252
+
253
+ #right eye
254
+ Mean_RE = np.mean(Landmarks[Map_RE],0)
255
+ L_RE1 = Mean_RE[1] - np.min(Landmarks[Map_RE_B,1])
256
+ L_RE1 = L_RE1 * 1.3
257
+ L_RE2 = L_RE1 / 1.9
258
+ L_RE_xy = L_RE1 + L_RE2
259
+ L_RE_lt = [L_RE_xy/2, L_RE1]
260
+ L_RE_rb = [L_RE_xy/2, L_RE2]
261
+ Location_RE = np.hstack((Mean_RE - L_RE_lt + 1, Mean_RE + L_RE_rb)).astype(int)
262
+
263
+ #nose
264
+ Mean_NO = np.mean(Landmarks[Map_NO],0)
265
+ L_NO1 =( np.max([Mean_NO[0] - Landmarks[31][0], Landmarks[35][0] - Mean_NO[0]])) * 1.25
266
+ L_NO2 = (Landmarks[33][1] - Mean_NO[1]) * 1.1
267
+ L_NO_xy = L_NO1 * 2
268
+ L_NO_lt = [L_NO_xy/2, L_NO_xy - L_NO2]
269
+ L_NO_rb = [L_NO_xy/2, L_NO2]
270
+ Location_NO = np.hstack((Mean_NO - L_NO_lt + 1, Mean_NO + L_NO_rb)).astype(int)
271
+
272
+ #mouth
273
+ Mean_MO = np.mean(Landmarks[Map_MO],0)
274
+ L_MO = np.max((np.max(np.max(Landmarks[Map_MO],0) - np.min(Landmarks[Map_MO],0))/2,16)) * 1.1
275
+ MO_O = Mean_MO - L_MO + 1
276
+ MO_T = Mean_MO + L_MO
277
+ MO_T[MO_T>510]=510
278
+ Location_MO = np.hstack((MO_O, MO_T)).astype(int)
279
+ return torch.cat([torch.FloatTensor(Location_LE).unsqueeze(0), torch.FloatTensor(Location_RE).unsqueeze(0), torch.FloatTensor(Location_NO).unsqueeze(0), torch.FloatTensor(Location_MO).unsqueeze(0)], dim=0)
280
+
281
+
282
+
283
+
284
+ def calc_mean_std_4D(feat, eps=1e-5):
285
+ # eps is a small value added to the variance to avoid divide-by-zero.
286
+ size = feat.size()
287
+ assert (len(size) == 4)
288
+ N, C = size[:2]
289
+ feat_var = feat.view(N, C, -1).var(dim=2) + eps
290
+ feat_std = feat_var.sqrt().view(N, C, 1, 1)
291
+ feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
292
+ return feat_mean, feat_std
293
+
294
+ def adaptive_instance_normalization_4D(content_feat, style_feat): # content_feat is ref feature, style is degradate feature
295
+ size = content_feat.size()
296
+ style_mean, style_std = calc_mean_std_4D(style_feat)
297
+ content_mean, content_std = calc_mean_std_4D(content_feat)
298
+ normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
299
+ return normalized_feat * style_std.expand(size) + style_mean.expand(size)
300
+
301
+
302
+ def convU(in_channels, out_channels,conv_layer, norm_layer, kernel_size=3, stride=1,dilation=1, bias=True):
303
+ return nn.Sequential(
304
+ SpectralNorm(conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
305
+ nn.LeakyReLU(0.2),
306
+ SpectralNorm(conv_layer(out_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
307
+ )
308
+
309
+
310
+ class MSDilateBlock(nn.Module):
311
+ def __init__(self, in_channels,conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, kernel_size=3, dilation=[1,1,1,1], bias=True):
312
+ super(MSDilateBlock, self).__init__()
313
+ self.conv1 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[0], bias=bias)
314
+ self.conv2 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[1], bias=bias)
315
+ self.conv3 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[2], bias=bias)
316
+ self.conv4 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[3], bias=bias)
317
+ self.convi = SpectralNorm(conv_layer(in_channels*4, in_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2, bias=bias))
318
+ def forward(self, x):
319
+ conv1 = self.conv1(x)
320
+ conv2 = self.conv2(x)
321
+ conv3 = self.conv3(x)
322
+ conv4 = self.conv4(x)
323
+ cat = torch.cat([conv1, conv2, conv3, conv4], 1)
324
+ out = self.convi(cat) + x
325
+ return out
326
+
327
+
328
+ class AdaptiveInstanceNorm(nn.Module):
329
+ def __init__(self, in_channel):
330
+ super().__init__()
331
+ self.norm = nn.InstanceNorm2d(in_channel)
332
+
333
+ def forward(self, input, style):
334
+ style_mean, style_std = calc_mean_std_4D(style)
335
+ out = self.norm(input)
336
+ size = input.size()
337
+ out = style_std.expand(size) * out + style_mean.expand(size)
338
+ return out
339
+
340
+ class NoiseInjection(nn.Module):
341
+ def __init__(self, channel):
342
+ super().__init__()
343
+ self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1))
344
+ def forward(self, image, noise):
345
+ if noise is None:
346
+ b, c, h, w = image.shape
347
+ noise = image.new_empty(b, 1, h, w).normal_()
348
+ return image + self.weight * noise
349
+
350
+ class StyledUpBlock(nn.Module):
351
+ def __init__(self, in_channel, out_channel, kernel_size=3, padding=1,upsample=False, noise_inject=False):
352
+ super().__init__()
353
+
354
+ self.noise_inject = noise_inject
355
+ if upsample:
356
+ self.conv1 = nn.Sequential(
357
+ nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
358
+ SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
359
+ nn.LeakyReLU(0.2),
360
+ )
361
+ else:
362
+ self.conv1 = nn.Sequential(
363
+ SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
364
+ nn.LeakyReLU(0.2),
365
+ SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
366
+ )
367
+ self.convup = nn.Sequential(
368
+ nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
369
+ SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
370
+ nn.LeakyReLU(0.2),
371
+ SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
372
+ )
373
+ if self.noise_inject:
374
+ self.noise1 = NoiseInjection(out_channel)
375
+
376
+ self.lrelu1 = nn.LeakyReLU(0.2)
377
+
378
+ self.ScaleModel1 = nn.Sequential(
379
+ SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
380
+ nn.LeakyReLU(0.2),
381
+ SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1))
382
+ )
383
+ self.ShiftModel1 = nn.Sequential(
384
+ SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
385
+ nn.LeakyReLU(0.2),
386
+ SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)),
387
+ )
388
+
389
+ def forward(self, input, style):
390
+ out = self.conv1(input)
391
+ out = self.lrelu1(out)
392
+ Shift1 = self.ShiftModel1(style)
393
+ Scale1 = self.ScaleModel1(style)
394
+ out = out * Scale1 + Shift1
395
+ if self.noise_inject:
396
+ out = self.noise1(out, noise=None)
397
+ outup = self.convup(out)
398
+ return outup
399
+
400
+
401
+ ####################################################################
402
+ ###############Face Dictionary Generator
403
+ ####################################################################
404
+ def AttentionBlock(in_channel):
405
+ return nn.Sequential(
406
+ SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
407
+ nn.LeakyReLU(0.2),
408
+ SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
409
+ )
410
+
411
+ class DilateResBlock(nn.Module):
412
+ def __init__(self, dim, dilation=[5,3] ):
413
+ super(DilateResBlock, self).__init__()
414
+ self.Res = nn.Sequential(
415
+ SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[0], dilation[0])),
416
+ nn.LeakyReLU(0.2),
417
+ SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[1], dilation[1])),
418
+ )
419
+ def forward(self, x):
420
+ out = x + self.Res(x)
421
+ return out
422
+
423
+
424
+ class KeyValue(nn.Module):
425
+ def __init__(self, indim, keydim, valdim):
426
+ super(KeyValue, self).__init__()
427
+ self.Key = nn.Sequential(
428
+ SpectralNorm(nn.Conv2d(indim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)),
429
+ nn.LeakyReLU(0.2),
430
+ SpectralNorm(nn.Conv2d(keydim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)),
431
+ )
432
+ self.Value = nn.Sequential(
433
+ SpectralNorm(nn.Conv2d(indim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)),
434
+ nn.LeakyReLU(0.2),
435
+ SpectralNorm(nn.Conv2d(valdim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)),
436
+ )
437
+ def forward(self, x):
438
+ return self.Key(x), self.Value(x)
439
+
440
+ class MaskAttention(nn.Module):
441
+ def __init__(self, indim):
442
+ super(MaskAttention, self).__init__()
443
+ self.conv1 = nn.Sequential(
444
+ SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
445
+ nn.LeakyReLU(0.2),
446
+ SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
447
+ )
448
+ self.conv2 = nn.Sequential(
449
+ SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
450
+ nn.LeakyReLU(0.2),
451
+ SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
452
+ )
453
+ self.conv3 = nn.Sequential(
454
+ SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
455
+ nn.LeakyReLU(0.2),
456
+ SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
457
+ )
458
+ self.convCat = nn.Sequential(
459
+ SpectralNorm(nn.Conv2d(indim//3 * 3, indim, kernel_size=(3,3), padding=(1,1), stride=1)),
460
+ nn.LeakyReLU(0.2),
461
+ SpectralNorm(nn.Conv2d(indim, indim, kernel_size=(3,3), padding=(1,1), stride=1)),
462
+ )
463
+ def forward(self, x, y, z):
464
+ c1 = self.conv1(x)
465
+ c2 = self.conv2(y)
466
+ c3 = self.conv3(z)
467
+ return self.convCat(torch.cat([c1,c2,c3], dim=1))
468
+
469
+ class Query(nn.Module):
470
+ def __init__(self, indim, quedim):
471
+ super(Query, self).__init__()
472
+ self.Query = nn.Sequential(
473
+ SpectralNorm(nn.Conv2d(indim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)),
474
+ nn.LeakyReLU(0.2),
475
+ SpectralNorm(nn.Conv2d(quedim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)),
476
+ )
477
+ def forward(self, x):
478
+ return self.Query(x)
479
+
480
+ def roi_align_self(input, location, target_size):
481
+ test = (target_size.item(),target_size.item())
482
+ return torch.cat([F.interpolate(input[i:i+1,:,location[i,1]:location[i,3],location[i,0]:location[i,2]],test,mode='bilinear',align_corners=False) for i in range(input.size(0))],0)
483
+
484
+ class FeatureExtractor(nn.Module):
485
+ def __init__(self, ngf = 64, key_scale = 4):#
486
+ super().__init__()
487
+
488
+ self.key_scale = 4
489
+ self.part_sizes = np.array([80,80,50,110]) #
490
+ self.feature_sizes = np.array([256,128,64]) #
491
+
492
+ self.conv1 = nn.Sequential(
493
+ SpectralNorm(nn.Conv2d(3, ngf, 3, 2, 1)),
494
+ nn.LeakyReLU(0.2),
495
+ SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
496
+ )
497
+ self.conv2 = nn.Sequential(
498
+ SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
499
+ nn.LeakyReLU(0.2),
500
+ SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1))
501
+ )
502
+ self.res1 = DilateResBlock(ngf, [5,3])
503
+ self.res2 = DilateResBlock(ngf, [5,3])
504
+
505
+
506
+ self.conv3 = nn.Sequential(
507
+ SpectralNorm(nn.Conv2d(ngf, ngf*2, 3, 2, 1)),
508
+ nn.LeakyReLU(0.2),
509
+ SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)),
510
+ )
511
+ self.conv4 = nn.Sequential(
512
+ SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)),
513
+ nn.LeakyReLU(0.2),
514
+ SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1))
515
+ )
516
+ self.res3 = DilateResBlock(ngf*2, [3,1])
517
+ self.res4 = DilateResBlock(ngf*2, [3,1])
518
+
519
+ self.conv5 = nn.Sequential(
520
+ SpectralNorm(nn.Conv2d(ngf*2, ngf*4, 3, 2, 1)),
521
+ nn.LeakyReLU(0.2),
522
+ SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)),
523
+ )
524
+ self.conv6 = nn.Sequential(
525
+ SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)),
526
+ nn.LeakyReLU(0.2),
527
+ SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1))
528
+ )
529
+ self.res5 = DilateResBlock(ngf*4, [1,1])
530
+ self.res6 = DilateResBlock(ngf*4, [1,1])
531
+
532
+ self.LE_256_Q = Query(ngf, ngf // self.key_scale)
533
+ self.RE_256_Q = Query(ngf, ngf // self.key_scale)
534
+ self.MO_256_Q = Query(ngf, ngf // self.key_scale)
535
+ self.LE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
536
+ self.RE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
537
+ self.MO_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
538
+ self.LE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
539
+ self.RE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
540
+ self.MO_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
541
+
542
+
543
+ def forward(self, img, locs):
544
+ le_location = locs[:,0,:].int().cpu().numpy()
545
+ re_location = locs[:,1,:].int().cpu().numpy()
546
+ no_location = locs[:,2,:].int().cpu().numpy()
547
+ mo_location = locs[:,3,:].int().cpu().numpy()
548
+
549
+
550
+ f1_0 = self.conv1(img)
551
+ f1_1 = self.res1(f1_0)
552
+ f2_0 = self.conv2(f1_1)
553
+ f2_1 = self.res2(f2_0)
554
+
555
+ f3_0 = self.conv3(f2_1)
556
+ f3_1 = self.res3(f3_0)
557
+ f4_0 = self.conv4(f3_1)
558
+ f4_1 = self.res4(f4_0)
559
+
560
+ f5_0 = self.conv5(f4_1)
561
+ f5_1 = self.res5(f5_0)
562
+ f6_0 = self.conv6(f5_1)
563
+ f6_1 = self.res6(f6_0)
564
+
565
+
566
+ ####ROI Align
567
+ le_part_256 = roi_align_self(f2_1.clone(), le_location//2, self.part_sizes[0]//2)
568
+ re_part_256 = roi_align_self(f2_1.clone(), re_location//2, self.part_sizes[1]//2)
569
+ mo_part_256 = roi_align_self(f2_1.clone(), mo_location//2, self.part_sizes[3]//2)
570
+
571
+ le_part_128 = roi_align_self(f4_1.clone(), le_location//4, self.part_sizes[0]//4)
572
+ re_part_128 = roi_align_self(f4_1.clone(), re_location//4, self.part_sizes[1]//4)
573
+ mo_part_128 = roi_align_self(f4_1.clone(), mo_location//4, self.part_sizes[3]//4)
574
+
575
+ le_part_64 = roi_align_self(f6_1.clone(), le_location//8, self.part_sizes[0]//8)
576
+ re_part_64 = roi_align_self(f6_1.clone(), re_location//8, self.part_sizes[1]//8)
577
+ mo_part_64 = roi_align_self(f6_1.clone(), mo_location//8, self.part_sizes[3]//8)
578
+
579
+
580
+ le_256_q = self.LE_256_Q(le_part_256)
581
+ re_256_q = self.RE_256_Q(re_part_256)
582
+ mo_256_q = self.MO_256_Q(mo_part_256)
583
+
584
+ le_128_q = self.LE_128_Q(le_part_128)
585
+ re_128_q = self.RE_128_Q(re_part_128)
586
+ mo_128_q = self.MO_128_Q(mo_part_128)
587
+
588
+ le_64_q = self.LE_64_Q(le_part_64)
589
+ re_64_q = self.RE_64_Q(re_part_64)
590
+ mo_64_q = self.MO_64_Q(mo_part_64)
591
+
592
+ return {'f256': f2_1, 'f128': f4_1, 'f64': f6_1,\
593
+ 'le256': le_part_256, 're256': re_part_256, 'mo256': mo_part_256, \
594
+ 'le128': le_part_128, 're128': re_part_128, 'mo128': mo_part_128, \
595
+ 'le64': le_part_64, 're64': re_part_64, 'mo64': mo_part_64, \
596
+ 'le_256_q': le_256_q, 're_256_q': re_256_q, 'mo_256_q': mo_256_q,\
597
+ 'le_128_q': le_128_q, 're_128_q': re_128_q, 'mo_128_q': mo_128_q,\
598
+ 'le_64_q': le_64_q, 're_64_q': re_64_q, 'mo_64_q': mo_64_q}
599
+
600
+
601
+ class DMDNet(nn.Module):
602
+ def __init__(self, ngf = 64, banks_num = 128):
603
+ super().__init__()
604
+ self.part_sizes = np.array([80,80,50,110]) # size for 512
605
+ self.feature_sizes = np.array([256,128,64]) # size for 512
606
+
607
+ self.banks_num = banks_num
608
+ self.key_scale = 4
609
+
610
+ self.E_lq = FeatureExtractor(key_scale = self.key_scale)
611
+ self.E_hq = FeatureExtractor(key_scale = self.key_scale)
612
+
613
+ self.LE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
614
+ self.RE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
615
+ self.MO_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
616
+
617
+ self.LE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
618
+ self.RE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
619
+ self.MO_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
620
+
621
+ self.LE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
622
+ self.RE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
623
+ self.MO_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
624
+
625
+
626
+ self.LE_256_Attention = AttentionBlock(64)
627
+ self.RE_256_Attention = AttentionBlock(64)
628
+ self.MO_256_Attention = AttentionBlock(64)
629
+
630
+ self.LE_128_Attention = AttentionBlock(128)
631
+ self.RE_128_Attention = AttentionBlock(128)
632
+ self.MO_128_Attention = AttentionBlock(128)
633
+
634
+ self.LE_64_Attention = AttentionBlock(256)
635
+ self.RE_64_Attention = AttentionBlock(256)
636
+ self.MO_64_Attention = AttentionBlock(256)
637
+
638
+ self.LE_256_Mask = MaskAttention(64)
639
+ self.RE_256_Mask = MaskAttention(64)
640
+ self.MO_256_Mask = MaskAttention(64)
641
+
642
+ self.LE_128_Mask = MaskAttention(128)
643
+ self.RE_128_Mask = MaskAttention(128)
644
+ self.MO_128_Mask = MaskAttention(128)
645
+
646
+ self.LE_64_Mask = MaskAttention(256)
647
+ self.RE_64_Mask = MaskAttention(256)
648
+ self.MO_64_Mask = MaskAttention(256)
649
+
650
+ self.MSDilate = MSDilateBlock(ngf*4, dilation = [4,3,2,1])
651
+
652
+ self.up1 = StyledUpBlock(ngf*4, ngf*2, noise_inject=False) #
653
+ self.up2 = StyledUpBlock(ngf*2, ngf, noise_inject=False) #
654
+ self.up3 = StyledUpBlock(ngf, ngf, noise_inject=False) #
655
+ self.up4 = nn.Sequential(
656
+ SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
657
+ nn.LeakyReLU(0.2),
658
+ UpResBlock(ngf),
659
+ UpResBlock(ngf),
660
+ SpectralNorm(nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1)),
661
+ nn.Tanh()
662
+ )
663
+
664
+ # define generic memory, revise register_buffer to register_parameter for backward update
665
+ self.register_buffer('le_256_mem_key', torch.randn(128,16,40,40))
666
+ self.register_buffer('re_256_mem_key', torch.randn(128,16,40,40))
667
+ self.register_buffer('mo_256_mem_key', torch.randn(128,16,55,55))
668
+ self.register_buffer('le_256_mem_value', torch.randn(128,64,40,40))
669
+ self.register_buffer('re_256_mem_value', torch.randn(128,64,40,40))
670
+ self.register_buffer('mo_256_mem_value', torch.randn(128,64,55,55))
671
+
672
+
673
+ self.register_buffer('le_128_mem_key', torch.randn(128,32,20,20))
674
+ self.register_buffer('re_128_mem_key', torch.randn(128,32,20,20))
675
+ self.register_buffer('mo_128_mem_key', torch.randn(128,32,27,27))
676
+ self.register_buffer('le_128_mem_value', torch.randn(128,128,20,20))
677
+ self.register_buffer('re_128_mem_value', torch.randn(128,128,20,20))
678
+ self.register_buffer('mo_128_mem_value', torch.randn(128,128,27,27))
679
+
680
+ self.register_buffer('le_64_mem_key', torch.randn(128,64,10,10))
681
+ self.register_buffer('re_64_mem_key', torch.randn(128,64,10,10))
682
+ self.register_buffer('mo_64_mem_key', torch.randn(128,64,13,13))
683
+ self.register_buffer('le_64_mem_value', torch.randn(128,256,10,10))
684
+ self.register_buffer('re_64_mem_value', torch.randn(128,256,10,10))
685
+ self.register_buffer('mo_64_mem_value', torch.randn(128,256,13,13))
686
+
687
+
688
+ def readMem(self, k, v, q):
689
+ sim = F.conv2d(q, k)
690
+ score = F.softmax(sim/sqrt(sim.size(1)), dim=1) #B * S * 1 * 1 6*128
691
+ sb,sn,sw,sh = score.size()
692
+ s_m = score.view(sb, -1).unsqueeze(1)#2*1*M
693
+ vb,vn,vw,vh = v.size()
694
+ v_in = v.view(vb, -1).repeat(sb,1,1)#2*M*(c*w*h)
695
+ mem_out = torch.bmm(s_m, v_in).squeeze(1).view(sb, vn, vw,vh)
696
+ max_inds = torch.argmax(score, dim=1).squeeze()
697
+ return mem_out, max_inds
698
+
699
+
700
+ def memorize(self, img, locs):
701
+ fs = self.E_hq(img, locs)
702
+ LE256_key, LE256_value = self.LE_256_KV(fs['le256'])
703
+ RE256_key, RE256_value = self.RE_256_KV(fs['re256'])
704
+ MO256_key, MO256_value = self.MO_256_KV(fs['mo256'])
705
+
706
+ LE128_key, LE128_value = self.LE_128_KV(fs['le128'])
707
+ RE128_key, RE128_value = self.RE_128_KV(fs['re128'])
708
+ MO128_key, MO128_value = self.MO_128_KV(fs['mo128'])
709
+
710
+ LE64_key, LE64_value = self.LE_64_KV(fs['le64'])
711
+ RE64_key, RE64_value = self.RE_64_KV(fs['re64'])
712
+ MO64_key, MO64_value = self.MO_64_KV(fs['mo64'])
713
+
714
+ Mem256 = {'LE256Key': LE256_key, 'LE256Value': LE256_value, 'RE256Key': RE256_key, 'RE256Value': RE256_value,'MO256Key': MO256_key, 'MO256Value': MO256_value}
715
+ Mem128 = {'LE128Key': LE128_key, 'LE128Value': LE128_value, 'RE128Key': RE128_key, 'RE128Value': RE128_value,'MO128Key': MO128_key, 'MO128Value': MO128_value}
716
+ Mem64 = {'LE64Key': LE64_key, 'LE64Value': LE64_value, 'RE64Key': RE64_key, 'RE64Value': RE64_value,'MO64Key': MO64_key, 'MO64Value': MO64_value}
717
+
718
+ FS256 = {'LE256F':fs['le256'], 'RE256F':fs['re256'], 'MO256F':fs['mo256']}
719
+ FS128 = {'LE128F':fs['le128'], 'RE128F':fs['re128'], 'MO128F':fs['mo128']}
720
+ FS64 = {'LE64F':fs['le64'], 'RE64F':fs['re64'], 'MO64F':fs['mo64']}
721
+
722
+ return Mem256, Mem128, Mem64
723
+
724
+ def enhancer(self, fs_in, sp_256=None, sp_128=None, sp_64=None):
725
+ le_256_q = fs_in['le_256_q']
726
+ re_256_q = fs_in['re_256_q']
727
+ mo_256_q = fs_in['mo_256_q']
728
+
729
+ le_128_q = fs_in['le_128_q']
730
+ re_128_q = fs_in['re_128_q']
731
+ mo_128_q = fs_in['mo_128_q']
732
+
733
+ le_64_q = fs_in['le_64_q']
734
+ re_64_q = fs_in['re_64_q']
735
+ mo_64_q = fs_in['mo_64_q']
736
+
737
+
738
+ ####for 256
739
+ le_256_mem_g, le_256_inds = self.readMem(self.le_256_mem_key, self.le_256_mem_value, le_256_q)
740
+ re_256_mem_g, re_256_inds = self.readMem(self.re_256_mem_key, self.re_256_mem_value, re_256_q)
741
+ mo_256_mem_g, mo_256_inds = self.readMem(self.mo_256_mem_key, self.mo_256_mem_value, mo_256_q)
742
+
743
+ le_128_mem_g, le_128_inds = self.readMem(self.le_128_mem_key, self.le_128_mem_value, le_128_q)
744
+ re_128_mem_g, re_128_inds = self.readMem(self.re_128_mem_key, self.re_128_mem_value, re_128_q)
745
+ mo_128_mem_g, mo_128_inds = self.readMem(self.mo_128_mem_key, self.mo_128_mem_value, mo_128_q)
746
+
747
+ le_64_mem_g, le_64_inds = self.readMem(self.le_64_mem_key, self.le_64_mem_value, le_64_q)
748
+ re_64_mem_g, re_64_inds = self.readMem(self.re_64_mem_key, self.re_64_mem_value, re_64_q)
749
+ mo_64_mem_g, mo_64_inds = self.readMem(self.mo_64_mem_key, self.mo_64_mem_value, mo_64_q)
750
+
751
+ if sp_256 is not None and sp_128 is not None and sp_64 is not None:
752
+ le_256_mem_s, _ = self.readMem(sp_256['LE256Key'], sp_256['LE256Value'], le_256_q)
753
+ re_256_mem_s, _ = self.readMem(sp_256['RE256Key'], sp_256['RE256Value'], re_256_q)
754
+ mo_256_mem_s, _ = self.readMem(sp_256['MO256Key'], sp_256['MO256Value'], mo_256_q)
755
+ le_256_mask = self.LE_256_Mask(fs_in['le256'],le_256_mem_s,le_256_mem_g)
756
+ le_256_mem = le_256_mask*le_256_mem_s + (1-le_256_mask)*le_256_mem_g
757
+ re_256_mask = self.RE_256_Mask(fs_in['re256'],re_256_mem_s,re_256_mem_g)
758
+ re_256_mem = re_256_mask*re_256_mem_s + (1-re_256_mask)*re_256_mem_g
759
+ mo_256_mask = self.MO_256_Mask(fs_in['mo256'],mo_256_mem_s,mo_256_mem_g)
760
+ mo_256_mem = mo_256_mask*mo_256_mem_s + (1-mo_256_mask)*mo_256_mem_g
761
+
762
+ le_128_mem_s, _ = self.readMem(sp_128['LE128Key'], sp_128['LE128Value'], le_128_q)
763
+ re_128_mem_s, _ = self.readMem(sp_128['RE128Key'], sp_128['RE128Value'], re_128_q)
764
+ mo_128_mem_s, _ = self.readMem(sp_128['MO128Key'], sp_128['MO128Value'], mo_128_q)
765
+ le_128_mask = self.LE_128_Mask(fs_in['le128'],le_128_mem_s,le_128_mem_g)
766
+ le_128_mem = le_128_mask*le_128_mem_s + (1-le_128_mask)*le_128_mem_g
767
+ re_128_mask = self.RE_128_Mask(fs_in['re128'],re_128_mem_s,re_128_mem_g)
768
+ re_128_mem = re_128_mask*re_128_mem_s + (1-re_128_mask)*re_128_mem_g
769
+ mo_128_mask = self.MO_128_Mask(fs_in['mo128'],mo_128_mem_s,mo_128_mem_g)
770
+ mo_128_mem = mo_128_mask*mo_128_mem_s + (1-mo_128_mask)*mo_128_mem_g
771
+
772
+ le_64_mem_s, _ = self.readMem(sp_64['LE64Key'], sp_64['LE64Value'], le_64_q)
773
+ re_64_mem_s, _ = self.readMem(sp_64['RE64Key'], sp_64['RE64Value'], re_64_q)
774
+ mo_64_mem_s, _ = self.readMem(sp_64['MO64Key'], sp_64['MO64Value'], mo_64_q)
775
+ le_64_mask = self.LE_64_Mask(fs_in['le64'],le_64_mem_s,le_64_mem_g)
776
+ le_64_mem = le_64_mask*le_64_mem_s + (1-le_64_mask)*le_64_mem_g
777
+ re_64_mask = self.RE_64_Mask(fs_in['re64'],re_64_mem_s,re_64_mem_g)
778
+ re_64_mem = re_64_mask*re_64_mem_s + (1-re_64_mask)*re_64_mem_g
779
+ mo_64_mask = self.MO_64_Mask(fs_in['mo64'],mo_64_mem_s,mo_64_mem_g)
780
+ mo_64_mem = mo_64_mask*mo_64_mem_s + (1-mo_64_mask)*mo_64_mem_g
781
+ else:
782
+ le_256_mem = le_256_mem_g
783
+ re_256_mem = re_256_mem_g
784
+ mo_256_mem = mo_256_mem_g
785
+ le_128_mem = le_128_mem_g
786
+ re_128_mem = re_128_mem_g
787
+ mo_128_mem = mo_128_mem_g
788
+ le_64_mem = le_64_mem_g
789
+ re_64_mem = re_64_mem_g
790
+ mo_64_mem = mo_64_mem_g
791
+
792
+ le_256_mem_norm = adaptive_instance_normalization_4D(le_256_mem, fs_in['le256'])
793
+ re_256_mem_norm = adaptive_instance_normalization_4D(re_256_mem, fs_in['re256'])
794
+ mo_256_mem_norm = adaptive_instance_normalization_4D(mo_256_mem, fs_in['mo256'])
795
+
796
+ ####for 128
797
+ le_128_mem_norm = adaptive_instance_normalization_4D(le_128_mem, fs_in['le128'])
798
+ re_128_mem_norm = adaptive_instance_normalization_4D(re_128_mem, fs_in['re128'])
799
+ mo_128_mem_norm = adaptive_instance_normalization_4D(mo_128_mem, fs_in['mo128'])
800
+
801
+ ####for 64
802
+ le_64_mem_norm = adaptive_instance_normalization_4D(le_64_mem, fs_in['le64'])
803
+ re_64_mem_norm = adaptive_instance_normalization_4D(re_64_mem, fs_in['re64'])
804
+ mo_64_mem_norm = adaptive_instance_normalization_4D(mo_64_mem, fs_in['mo64'])
805
+
806
+
807
+ EnMem256 = {'LE256Norm': le_256_mem_norm, 'RE256Norm': re_256_mem_norm, 'MO256Norm': mo_256_mem_norm}
808
+ EnMem128 = {'LE128Norm': le_128_mem_norm, 'RE128Norm': re_128_mem_norm, 'MO128Norm': mo_128_mem_norm}
809
+ EnMem64 = {'LE64Norm': le_64_mem_norm, 'RE64Norm': re_64_mem_norm, 'MO64Norm': mo_64_mem_norm}
810
+ Ind256 = {'LE': le_256_inds, 'RE': re_256_inds, 'MO': mo_256_inds}
811
+ Ind128 = {'LE': le_128_inds, 'RE': re_128_inds, 'MO': mo_128_inds}
812
+ Ind64 = {'LE': le_64_inds, 'RE': re_64_inds, 'MO': mo_64_inds}
813
+ return EnMem256, EnMem128, EnMem64, Ind256, Ind128, Ind64
814
+
815
+ def reconstruct(self, fs_in, locs, memstar):
816
+ le_256_mem_norm, re_256_mem_norm, mo_256_mem_norm = memstar[0]['LE256Norm'], memstar[0]['RE256Norm'], memstar[0]['MO256Norm']
817
+ le_128_mem_norm, re_128_mem_norm, mo_128_mem_norm = memstar[1]['LE128Norm'], memstar[1]['RE128Norm'], memstar[1]['MO128Norm']
818
+ le_64_mem_norm, re_64_mem_norm, mo_64_mem_norm = memstar[2]['LE64Norm'], memstar[2]['RE64Norm'], memstar[2]['MO64Norm']
819
+
820
+ le_256_final = self.LE_256_Attention(le_256_mem_norm - fs_in['le256']) * le_256_mem_norm + fs_in['le256']
821
+ re_256_final = self.RE_256_Attention(re_256_mem_norm - fs_in['re256']) * re_256_mem_norm + fs_in['re256']
822
+ mo_256_final = self.MO_256_Attention(mo_256_mem_norm - fs_in['mo256']) * mo_256_mem_norm + fs_in['mo256']
823
+
824
+ le_128_final = self.LE_128_Attention(le_128_mem_norm - fs_in['le128']) * le_128_mem_norm + fs_in['le128']
825
+ re_128_final = self.RE_128_Attention(re_128_mem_norm - fs_in['re128']) * re_128_mem_norm + fs_in['re128']
826
+ mo_128_final = self.MO_128_Attention(mo_128_mem_norm - fs_in['mo128']) * mo_128_mem_norm + fs_in['mo128']
827
+
828
+ le_64_final = self.LE_64_Attention(le_64_mem_norm - fs_in['le64']) * le_64_mem_norm + fs_in['le64']
829
+ re_64_final = self.RE_64_Attention(re_64_mem_norm - fs_in['re64']) * re_64_mem_norm + fs_in['re64']
830
+ mo_64_final = self.MO_64_Attention(mo_64_mem_norm - fs_in['mo64']) * mo_64_mem_norm + fs_in['mo64']
831
+
832
+
833
+ le_location = locs[:,0,:]
834
+ re_location = locs[:,1,:]
835
+ mo_location = locs[:,3,:]
836
+
837
+ # Somehow with latest Torch it doesn't like numpy wrappers anymore
838
+
839
+ # le_location = le_location.cpu().int().numpy()
840
+ # re_location = re_location.cpu().int().numpy()
841
+ # mo_location = mo_location.cpu().int().numpy()
842
+ le_location = le_location.cpu().int()
843
+ re_location = re_location.cpu().int()
844
+ mo_location = mo_location.cpu().int()
845
+
846
+ up_in_256 = fs_in['f256'].clone()# * 0
847
+ up_in_128 = fs_in['f128'].clone()# * 0
848
+ up_in_64 = fs_in['f64'].clone()# * 0
849
+
850
+ for i in range(fs_in['f256'].size(0)):
851
+ up_in_256[i:i+1,:,le_location[i,1]//2:le_location[i,3]//2,le_location[i,0]//2:le_location[i,2]//2] = F.interpolate(le_256_final[i:i+1,:,:,:].clone(), (le_location[i,3]//2-le_location[i,1]//2,le_location[i,2]//2-le_location[i,0]//2),mode='bilinear',align_corners=False)
852
+ up_in_256[i:i+1,:,re_location[i,1]//2:re_location[i,3]//2,re_location[i,0]//2:re_location[i,2]//2] = F.interpolate(re_256_final[i:i+1,:,:,:].clone(), (re_location[i,3]//2-re_location[i,1]//2,re_location[i,2]//2-re_location[i,0]//2),mode='bilinear',align_corners=False)
853
+ up_in_256[i:i+1,:,mo_location[i,1]//2:mo_location[i,3]//2,mo_location[i,0]//2:mo_location[i,2]//2] = F.interpolate(mo_256_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//2-mo_location[i,1]//2,mo_location[i,2]//2-mo_location[i,0]//2),mode='bilinear',align_corners=False)
854
+
855
+ up_in_128[i:i+1,:,le_location[i,1]//4:le_location[i,3]//4,le_location[i,0]//4:le_location[i,2]//4] = F.interpolate(le_128_final[i:i+1,:,:,:].clone(), (le_location[i,3]//4-le_location[i,1]//4,le_location[i,2]//4-le_location[i,0]//4),mode='bilinear',align_corners=False)
856
+ up_in_128[i:i+1,:,re_location[i,1]//4:re_location[i,3]//4,re_location[i,0]//4:re_location[i,2]//4] = F.interpolate(re_128_final[i:i+1,:,:,:].clone(), (re_location[i,3]//4-re_location[i,1]//4,re_location[i,2]//4-re_location[i,0]//4),mode='bilinear',align_corners=False)
857
+ up_in_128[i:i+1,:,mo_location[i,1]//4:mo_location[i,3]//4,mo_location[i,0]//4:mo_location[i,2]//4] = F.interpolate(mo_128_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//4-mo_location[i,1]//4,mo_location[i,2]//4-mo_location[i,0]//4),mode='bilinear',align_corners=False)
858
+
859
+ up_in_64[i:i+1,:,le_location[i,1]//8:le_location[i,3]//8,le_location[i,0]//8:le_location[i,2]//8] = F.interpolate(le_64_final[i:i+1,:,:,:].clone(), (le_location[i,3]//8-le_location[i,1]//8,le_location[i,2]//8-le_location[i,0]//8),mode='bilinear',align_corners=False)
860
+ up_in_64[i:i+1,:,re_location[i,1]//8:re_location[i,3]//8,re_location[i,0]//8:re_location[i,2]//8] = F.interpolate(re_64_final[i:i+1,:,:,:].clone(), (re_location[i,3]//8-re_location[i,1]//8,re_location[i,2]//8-re_location[i,0]//8),mode='bilinear',align_corners=False)
861
+ up_in_64[i:i+1,:,mo_location[i,1]//8:mo_location[i,3]//8,mo_location[i,0]//8:mo_location[i,2]//8] = F.interpolate(mo_64_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//8-mo_location[i,1]//8,mo_location[i,2]//8-mo_location[i,0]//8),mode='bilinear',align_corners=False)
862
+
863
+ ms_in_64 = self.MSDilate(fs_in['f64'].clone())
864
+ fea_up1 = self.up1(ms_in_64, up_in_64)
865
+ fea_up2 = self.up2(fea_up1, up_in_128) #
866
+ fea_up3 = self.up3(fea_up2, up_in_256) #
867
+ output = self.up4(fea_up3) #
868
+ return output
869
+
870
+ def generate_specific_dictionary(self, sp_imgs=None, sp_locs=None):
871
+ return self.memorize(sp_imgs, sp_locs)
872
+
873
+ def forward(self, lq=None, loc=None, sp_256 = None, sp_128 = None, sp_64 = None):
874
+ try:
875
+ fs_in = self.E_lq(lq, loc) # low quality images
876
+ except Exception as e:
877
+ print(e)
878
+
879
+ GeMemNorm256, GeMemNorm128, GeMemNorm64, Ind256, Ind128, Ind64 = self.enhancer(fs_in)
880
+ GeOut = self.reconstruct(fs_in, loc, memstar = [GeMemNorm256, GeMemNorm128, GeMemNorm64])
881
+ if sp_256 is not None and sp_128 is not None and sp_64 is not None:
882
+ GSMemNorm256, GSMemNorm128, GSMemNorm64, _, _, _ = self.enhancer(fs_in, sp_256, sp_128, sp_64)
883
+ GSOut = self.reconstruct(fs_in, loc, memstar = [GSMemNorm256, GSMemNorm128, GSMemNorm64])
884
+ else:
885
+ GSOut = None
886
+ return GeOut, GSOut
887
+
888
+ class UpResBlock(nn.Module):
889
+ def __init__(self, dim, conv_layer = nn.Conv2d, norm_layer = nn.BatchNorm2d):
890
+ super(UpResBlock, self).__init__()
891
+ self.Model = nn.Sequential(
892
+ SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
893
+ nn.LeakyReLU(0.2),
894
+ SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
895
+ )
896
+ def forward(self, x):
897
+ out = x + self.Model(x)
898
+ return out
roop/processors/Enhance_GFPGAN.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, List, Callable
2
+ import cv2
3
+ import numpy as np
4
+ import onnxruntime
5
+ import roop.globals
6
+
7
+ from roop.typing import Face, Frame, FaceSet
8
+ from roop.utilities import resolve_relative_path
9
+
10
+
11
+ # THREAD_LOCK = threading.Lock()
12
+
13
+
14
+ class Enhance_GFPGAN():
15
+ plugin_options:dict = None
16
+
17
+ model_gfpgan = None
18
+ name = None
19
+ devicename = None
20
+
21
+ processorname = 'gfpgan'
22
+ type = 'enhance'
23
+
24
+
25
+ def Initialize(self, plugin_options:dict):
26
+ if self.plugin_options is not None:
27
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
28
+ self.Release()
29
+
30
+ self.plugin_options = plugin_options
31
+ if self.model_gfpgan is None:
32
+ model_path = resolve_relative_path('../models/GFPGANv1.4.onnx')
33
+ self.model_gfpgan = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
34
+ # replace Mac mps with cpu for the moment
35
+ self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
36
+
37
+ self.name = self.model_gfpgan.get_inputs()[0].name
38
+
39
+ def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
40
+ # preprocess
41
+ input_size = temp_frame.shape[1]
42
+ temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
43
+
44
+ temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
45
+ temp_frame = temp_frame.astype('float32') / 255.0
46
+ temp_frame = (temp_frame - 0.5) / 0.5
47
+ temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
48
+
49
+ io_binding = self.model_gfpgan.io_binding()
50
+ io_binding.bind_cpu_input("input", temp_frame)
51
+ io_binding.bind_output("1288", self.devicename)
52
+ self.model_gfpgan.run_with_iobinding(io_binding)
53
+ ort_outs = io_binding.copy_outputs_to_cpu()
54
+ result = ort_outs[0][0]
55
+
56
+ # post-process
57
+ result = np.clip(result, -1, 1)
58
+ result = (result + 1) / 2
59
+ result = result.transpose(1, 2, 0) * 255.0
60
+ result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
61
+ scale_factor = int(result.shape[1] / input_size)
62
+ return result.astype(np.uint8), scale_factor
63
+
64
+
65
+ def Release(self):
66
+ self.model_gfpgan = None
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+
77
+
roop/processors/Enhance_GPEN.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, List, Callable
2
+ import cv2
3
+ import numpy as np
4
+ import onnxruntime
5
+ import roop.globals
6
+
7
+ from roop.typing import Face, Frame, FaceSet
8
+ from roop.utilities import resolve_relative_path
9
+
10
+
11
+ class Enhance_GPEN():
12
+ plugin_options:dict = None
13
+
14
+ model_gpen = None
15
+ name = None
16
+ devicename = None
17
+
18
+ processorname = 'gpen'
19
+ type = 'enhance'
20
+
21
+
22
+ def Initialize(self, plugin_options:dict):
23
+ if self.plugin_options is not None:
24
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
25
+ self.Release()
26
+
27
+ self.plugin_options = plugin_options
28
+ if self.model_gpen is None:
29
+ model_path = resolve_relative_path('../models/GPEN-BFR-512.onnx')
30
+ self.model_gpen = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
31
+ # replace Mac mps with cpu for the moment
32
+ self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
33
+
34
+ self.name = self.model_gpen.get_inputs()[0].name
35
+
36
+ def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
37
+ # preprocess
38
+ input_size = temp_frame.shape[1]
39
+ temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
40
+
41
+ temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
42
+ temp_frame = temp_frame.astype('float32') / 255.0
43
+ temp_frame = (temp_frame - 0.5) / 0.5
44
+ temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
45
+
46
+ io_binding = self.model_gpen.io_binding()
47
+ io_binding.bind_cpu_input("input", temp_frame)
48
+ io_binding.bind_output("output", self.devicename)
49
+ self.model_gpen.run_with_iobinding(io_binding)
50
+ ort_outs = io_binding.copy_outputs_to_cpu()
51
+ result = ort_outs[0][0]
52
+
53
+ # post-process
54
+ result = np.clip(result, -1, 1)
55
+ result = (result + 1) / 2
56
+ result = result.transpose(1, 2, 0) * 255.0
57
+ result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
58
+ scale_factor = int(result.shape[1] / input_size)
59
+ return result.astype(np.uint8), scale_factor
60
+
61
+
62
+ def Release(self):
63
+ self.model_gpen = None
roop/processors/Enhance_RestoreFormerPPlus.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, List, Callable
2
+ import cv2
3
+ import numpy as np
4
+ import onnxruntime
5
+ import roop.globals
6
+
7
+ from roop.typing import Face, Frame, FaceSet
8
+ from roop.utilities import resolve_relative_path
9
+
10
+ class Enhance_RestoreFormerPPlus():
11
+ plugin_options:dict = None
12
+ model_restoreformerpplus = None
13
+ devicename = None
14
+ name = None
15
+
16
+ processorname = 'restoreformer++'
17
+ type = 'enhance'
18
+
19
+
20
+ def Initialize(self, plugin_options:dict):
21
+ if self.plugin_options is not None:
22
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
23
+ self.Release()
24
+
25
+ self.plugin_options = plugin_options
26
+ if self.model_restoreformerpplus is None:
27
+ # replace Mac mps with cpu for the moment
28
+ self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
29
+ model_path = resolve_relative_path('../models/restoreformer_plus_plus.onnx')
30
+ self.model_restoreformerpplus = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
31
+ self.model_inputs = self.model_restoreformerpplus.get_inputs()
32
+ model_outputs = self.model_restoreformerpplus.get_outputs()
33
+ self.io_binding = self.model_restoreformerpplus.io_binding()
34
+ self.io_binding.bind_output(model_outputs[0].name, self.devicename)
35
+
36
+ def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
37
+ # preprocess
38
+ input_size = temp_frame.shape[1]
39
+ temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
40
+ temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
41
+ temp_frame = temp_frame.astype('float32') / 255.0
42
+ temp_frame = (temp_frame - 0.5) / 0.5
43
+ temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
44
+
45
+ self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame) # .astype(np.float32)
46
+ self.model_restoreformerpplus.run_with_iobinding(self.io_binding)
47
+ ort_outs = self.io_binding.copy_outputs_to_cpu()
48
+ result = ort_outs[0][0]
49
+ del ort_outs
50
+
51
+ result = np.clip(result, -1, 1)
52
+ result = (result + 1) / 2
53
+ result = result.transpose(1, 2, 0) * 255.0
54
+ result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
55
+ scale_factor = int(result.shape[1] / input_size)
56
+ return result.astype(np.uint8), scale_factor
57
+
58
+
59
+ def Release(self):
60
+ del self.model_restoreformerpplus
61
+ self.model_restoreformerpplus = None
62
+ del self.io_binding
63
+ self.io_binding = None
64
+
roop/processors/FaceSwapInsightFace.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import roop.globals
2
+ import cv2
3
+ import numpy as np
4
+ import onnx
5
+ import onnxruntime
6
+
7
+ from roop.typing import Face, Frame
8
+ from roop.utilities import resolve_relative_path
9
+
10
+
11
+
12
+ class FaceSwapInsightFace():
13
+ plugin_options:dict = None
14
+ model_swap_insightface = None
15
+
16
+ processorname = 'faceswap'
17
+ type = 'swap'
18
+
19
+
20
+ def Initialize(self, plugin_options:dict):
21
+ if self.plugin_options is not None:
22
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
23
+ self.Release()
24
+
25
+ self.plugin_options = plugin_options
26
+ if self.model_swap_insightface is None:
27
+ model_path = resolve_relative_path('../models/inswapper_128.onnx')
28
+ graph = onnx.load(model_path).graph
29
+ self.emap = onnx.numpy_helper.to_array(graph.initializer[-1])
30
+ self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
31
+ self.input_mean = 0.0
32
+ self.input_std = 255.0
33
+ #cuda_options = {"arena_extend_strategy": "kSameAsRequested", 'cudnn_conv_algo_search': 'DEFAULT'}
34
+ sess_options = onnxruntime.SessionOptions()
35
+ sess_options.enable_cpu_mem_arena = False
36
+ self.model_swap_insightface = onnxruntime.InferenceSession(model_path, sess_options, providers=roop.globals.execution_providers)
37
+
38
+
39
+
40
+ def Run(self, source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
41
+ blob = cv2.dnn.blobFromImage(temp_frame, 1.0 / self.input_std, (128, 128),
42
+ (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
43
+ latent = source_face.normed_embedding.reshape((1,-1))
44
+ latent = np.dot(latent, self.emap)
45
+ latent /= np.linalg.norm(latent)
46
+ io_binding = self.model_swap_insightface.io_binding()
47
+ io_binding.bind_cpu_input("target", blob)
48
+ io_binding.bind_cpu_input("source", latent)
49
+ io_binding.bind_output("output", self.devicename)
50
+ self.model_swap_insightface.run_with_iobinding(io_binding)
51
+ ort_outs = io_binding.copy_outputs_to_cpu()[0]
52
+ img_fake = ort_outs.transpose((0,2,3,1))[0]
53
+ return np.clip(255 * img_fake, 0, 255).astype(np.uint8)[:,:,::-1]
54
+
55
+
56
+ img_fake, M = self.model_swap_insightface.get(temp_frame, target_face, source_face, paste_back=False)
57
+ # target_face.matrix = M
58
+ # return img_fake
59
+
60
+
61
+ def Release(self):
62
+ del self.model_swap_insightface
63
+ self.model_swap_insightface = None
64
+
65
+
66
+
67
+
68
+
69
+
roop/processors/Frame_Colorizer.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import onnxruntime
4
+ import roop.globals
5
+
6
+ from roop.utilities import resolve_relative_path
7
+ from roop.typing import Frame
8
+
9
+ class Frame_Colorizer():
10
+ plugin_options:dict = None
11
+ model_colorizer = None
12
+ devicename = None
13
+ prev_type = None
14
+
15
+ processorname = 'deoldify'
16
+ type = 'frame_colorizer'
17
+
18
+
19
+ def Initialize(self, plugin_options:dict):
20
+ if self.plugin_options is not None:
21
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
22
+ self.Release()
23
+
24
+ self.plugin_options = plugin_options
25
+ if self.prev_type is not None and self.prev_type != self.plugin_options["subtype"]:
26
+ self.Release()
27
+ self.prev_type = self.plugin_options["subtype"]
28
+ if self.model_colorizer is None:
29
+ # replace Mac mps with cpu for the moment
30
+ self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
31
+ if self.prev_type == "deoldify_artistic":
32
+ model_path = resolve_relative_path('../models/Frame/deoldify_artistic.onnx')
33
+ elif self.prev_type == "deoldify_stable":
34
+ model_path = resolve_relative_path('../models/Frame/deoldify_stable.onnx')
35
+
36
+ onnxruntime.set_default_logger_severity(3)
37
+ self.model_colorizer = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
38
+ self.model_inputs = self.model_colorizer.get_inputs()
39
+ model_outputs = self.model_colorizer.get_outputs()
40
+ self.io_binding = self.model_colorizer.io_binding()
41
+ self.io_binding.bind_output(model_outputs[0].name, self.devicename)
42
+
43
+ def Run(self, input_frame: Frame) -> Frame:
44
+ temp_frame = cv2.cvtColor(input_frame, cv2.COLOR_BGR2GRAY)
45
+ temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_GRAY2RGB)
46
+ temp_frame = cv2.resize(temp_frame, (256, 256))
47
+ temp_frame = temp_frame.transpose((2, 0, 1))
48
+ temp_frame = np.expand_dims(temp_frame, axis=0).astype(np.float32)
49
+ self.io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame)
50
+ self.model_colorizer.run_with_iobinding(self.io_binding)
51
+ ort_outs = self.io_binding.copy_outputs_to_cpu()
52
+ result = ort_outs[0][0]
53
+ del ort_outs
54
+ colorized_frame = result.transpose(1, 2, 0)
55
+ colorized_frame = cv2.resize(colorized_frame, (input_frame.shape[1], input_frame.shape[0]))
56
+ temp_blue_channel, _, _ = cv2.split(input_frame)
57
+ colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_BGR2RGB).astype(np.uint8)
58
+ colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_BGR2LAB)
59
+ _, color_green_channel, color_red_channel = cv2.split(colorized_frame)
60
+ colorized_frame = cv2.merge((temp_blue_channel, color_green_channel, color_red_channel))
61
+ colorized_frame = cv2.cvtColor(colorized_frame, cv2.COLOR_LAB2BGR)
62
+ return colorized_frame.astype(np.uint8)
63
+
64
+
65
+ def Release(self):
66
+ del self.model_colorizer
67
+ self.model_colorizer = None
68
+ del self.io_binding
69
+ self.io_binding = None
70
+
roop/processors/Frame_Filter.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ from roop.typing import Frame
5
+
6
+ class Frame_Filter():
7
+ processorname = 'generic_filter'
8
+ type = 'frame_processor'
9
+
10
+ plugin_options:dict = None
11
+
12
+ c64_palette = np.array([
13
+ [0, 0, 0],
14
+ [255, 255, 255],
15
+ [0x81, 0x33, 0x38],
16
+ [0x75, 0xce, 0xc8],
17
+ [0x8e, 0x3c, 0x97],
18
+ [0x56, 0xac, 0x4d],
19
+ [0x2e, 0x2c, 0x9b],
20
+ [0xed, 0xf1, 0x71],
21
+ [0x8e, 0x50, 0x29],
22
+ [0x55, 0x38, 0x00],
23
+ [0xc4, 0x6c, 0x71],
24
+ [0x4a, 0x4a, 0x4a],
25
+ [0x7b, 0x7b, 0x7b],
26
+ [0xa9, 0xff, 0x9f],
27
+ [0x70, 0x6d, 0xeb],
28
+ [0xb2, 0xb2, 0xb2]
29
+ ])
30
+
31
+
32
+ def RenderC64Screen(self, image):
33
+ # Simply round the color values to the nearest color in the palette
34
+ image = cv2.resize(image,(320,200))
35
+ palette = self.c64_palette / 255.0 # Normalize palette
36
+ img_normalized = image / 255.0 # Normalize image
37
+
38
+ # Calculate the index in the palette that is closest to each pixel in the image
39
+ indices = np.sqrt(((img_normalized[:, :, None, :] - palette[None, None, :, :]) ** 2).sum(axis=3)).argmin(axis=2)
40
+ # Map the image to the palette colors
41
+ mapped_image = palette[indices]
42
+ return (mapped_image * 255).astype(np.uint8) # Denormalize and return the image
43
+
44
+
45
+ def RenderDetailEnhance(self, image):
46
+ return cv2.detailEnhance(image)
47
+
48
+ def RenderStylize(self, image):
49
+ return cv2.stylization(image)
50
+
51
+ def RenderPencilSketch(self, image):
52
+ imgray, imout = cv2.pencilSketch(image, sigma_s=60, sigma_r=0.07, shade_factor=0.05)
53
+ return imout
54
+
55
+ def RenderCartoon(self, image):
56
+ numDownSamples = 2 # number of downscaling steps
57
+ numBilateralFilters = 7 # number of bilateral filtering steps
58
+
59
+ img_color = image
60
+ for _ in range(numDownSamples):
61
+ img_color = cv2.pyrDown(img_color)
62
+ for _ in range(numBilateralFilters):
63
+ img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
64
+ for _ in range(numDownSamples):
65
+ img_color = cv2.pyrUp(img_color)
66
+ img_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
67
+ img_blur = cv2.medianBlur(img_gray, 7)
68
+ img_edge = cv2.adaptiveThreshold(img_blur, 255,
69
+ cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2)
70
+ img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
71
+ if img_color.shape != image.shape:
72
+ img_color = cv2.resize(img_color, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)
73
+ if img_color.shape != img_edge.shape:
74
+ img_edge = cv2.resize(img_edge, (img_color.shape[1], img_color.shape[0]), interpolation=cv2.INTER_LINEAR)
75
+ return cv2.bitwise_and(img_color, img_edge)
76
+
77
+
78
+ def Initialize(self, plugin_options:dict):
79
+ if self.plugin_options is not None:
80
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
81
+ self.Release()
82
+ self.plugin_options = plugin_options
83
+
84
+ def Run(self, temp_frame: Frame) -> Frame:
85
+ subtype = self.plugin_options["subtype"]
86
+ if subtype == "stylize":
87
+ return self.RenderStylize(temp_frame).astype(np.uint8)
88
+ if subtype == "detailenhance":
89
+ return self.RenderDetailEnhance(temp_frame).astype(np.uint8)
90
+ if subtype == "pencil":
91
+ return self.RenderPencilSketch(temp_frame).astype(np.uint8)
92
+ if subtype == "cartoon":
93
+ return self.RenderCartoon(temp_frame).astype(np.uint8)
94
+ if subtype == "C64":
95
+ return self.RenderC64Screen(temp_frame).astype(np.uint8)
96
+
97
+
98
+ def Release(self):
99
+ pass
100
+
101
+ def getProcessedResolution(self, width, height):
102
+ if self.plugin_options["subtype"] == "C64":
103
+ return (320,200)
104
+ return None
105
+
roop/processors/Frame_Masking.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import onnxruntime
4
+ import roop.globals
5
+
6
+ from roop.utilities import resolve_relative_path
7
+ from roop.typing import Frame
8
+
9
+ class Frame_Masking():
10
+ plugin_options:dict = None
11
+ model_masking = None
12
+ devicename = None
13
+ name = None
14
+
15
+ processorname = 'removebg'
16
+ type = 'frame_masking'
17
+
18
+
19
+ def Initialize(self, plugin_options:dict):
20
+ if self.plugin_options is not None:
21
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
22
+ self.Release()
23
+
24
+ self.plugin_options = plugin_options
25
+ if self.model_masking is None:
26
+ # replace Mac mps with cpu for the moment
27
+ self.devicename = self.plugin_options["devicename"]
28
+ self.devicename = self.devicename.replace('mps', 'cpu')
29
+ model_path = resolve_relative_path('../models/Frame/isnet-general-use.onnx')
30
+ self.model_masking = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
31
+ self.model_inputs = self.model_masking.get_inputs()
32
+ model_outputs = self.model_masking.get_outputs()
33
+ self.io_binding = self.model_masking.io_binding()
34
+ self.io_binding.bind_output(model_outputs[0].name, self.devicename)
35
+
36
+ def Run(self, temp_frame: Frame) -> Frame:
37
+ # Pre process:Resize, BGR->RGB, float32 cast
38
+ input_image = cv2.resize(temp_frame, (1024, 1024))
39
+ input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
40
+ mean = [0.5, 0.5, 0.5]
41
+ std = [1.0, 1.0, 1.0]
42
+ input_image = (input_image / 255.0 - mean) / std
43
+ input_image = input_image.transpose(2, 0, 1)
44
+ input_image = np.expand_dims(input_image, axis=0)
45
+ input_image = input_image.astype('float32')
46
+
47
+ self.io_binding.bind_cpu_input(self.model_inputs[0].name, input_image)
48
+ self.model_masking.run_with_iobinding(self.io_binding)
49
+ ort_outs = self.io_binding.copy_outputs_to_cpu()
50
+ result = ort_outs[0][0]
51
+ del ort_outs
52
+ # Post process:squeeze, Sigmoid, Normarize, uint8 cast
53
+ mask = np.squeeze(result[0])
54
+ min_value = np.min(mask)
55
+ max_value = np.max(mask)
56
+ mask = (mask - min_value) / (max_value - min_value)
57
+ #mask = np.where(mask < score_th, 0, 1)
58
+ #mask *= 255
59
+ mask = cv2.resize(mask, (temp_frame.shape[1], temp_frame.shape[0]), interpolation=cv2.INTER_LINEAR)
60
+ mask = np.reshape(mask, [mask.shape[0],mask.shape[1],1])
61
+ result = mask * temp_frame.astype(np.float32)
62
+ return result.astype(np.uint8)
63
+
64
+
65
+
66
+ def Release(self):
67
+ del self.model_masking
68
+ self.model_masking = None
69
+ del self.io_binding
70
+ self.io_binding = None
71
+
roop/processors/Frame_Upscale.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import onnxruntime
4
+ import roop.globals
5
+ import threading
6
+
7
+ from roop.utilities import resolve_relative_path
8
+ from roop.typing import Frame
9
+
10
+ class Frame_Upscale():
11
+ plugin_options:dict = None
12
+ model_upscale = None
13
+ devicename = None
14
+ prev_type = None
15
+
16
+ processorname = 'upscale'
17
+ type = 'frame_enhancer'
18
+
19
+ THREAD_LOCK_UPSCALE = threading.Lock()
20
+
21
+
22
+ def Initialize(self, plugin_options:dict):
23
+ if self.plugin_options is not None:
24
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
25
+ self.Release()
26
+
27
+ self.plugin_options = plugin_options
28
+ if self.prev_type is not None and self.prev_type != self.plugin_options["subtype"]:
29
+ self.Release()
30
+ self.prev_type = self.plugin_options["subtype"]
31
+ if self.model_upscale is None:
32
+ # replace Mac mps with cpu for the moment
33
+ self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
34
+ if self.prev_type == "esrganx4":
35
+ model_path = resolve_relative_path('../models/Frame/real_esrgan_x4.onnx')
36
+ self.scale = 4
37
+ elif self.prev_type == "esrganx2":
38
+ model_path = resolve_relative_path('../models/Frame/real_esrgan_x2.onnx')
39
+ self.scale = 2
40
+ elif self.prev_type == "lsdirx4":
41
+ model_path = resolve_relative_path('../models/Frame/lsdir_x4.onnx')
42
+ self.scale = 4
43
+
44
+ self.model_upscale = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
45
+ self.model_inputs = self.model_upscale.get_inputs()
46
+ model_outputs = self.model_upscale.get_outputs()
47
+ self.io_binding = self.model_upscale.io_binding()
48
+ self.io_binding.bind_output(model_outputs[0].name, self.devicename)
49
+
50
+ def getProcessedResolution(self, width, height):
51
+ return (width * self.scale, height * self.scale)
52
+
53
+ # borrowed from facefusion -> https://github.com/facefusion/facefusion
54
+ def prepare_tile_frame(self, tile_frame : Frame) -> Frame:
55
+ tile_frame = np.expand_dims(tile_frame[:, :, ::-1], axis = 0)
56
+ tile_frame = tile_frame.transpose(0, 3, 1, 2)
57
+ tile_frame = tile_frame.astype(np.float32) / 255
58
+ return tile_frame
59
+
60
+
61
+ def normalize_tile_frame(self, tile_frame : Frame) -> Frame:
62
+ tile_frame = tile_frame.transpose(0, 2, 3, 1).squeeze(0) * 255
63
+ tile_frame = tile_frame.clip(0, 255).astype(np.uint8)[:, :, ::-1]
64
+ return tile_frame
65
+
66
+ def create_tile_frames(self, input_frame : Frame, size):
67
+ input_frame = np.pad(input_frame, ((size[1], size[1]), (size[1], size[1]), (0, 0)))
68
+ tile_width = size[0] - 2 * size[2]
69
+ pad_size_bottom = size[2] + tile_width - input_frame.shape[0] % tile_width
70
+ pad_size_right = size[2] + tile_width - input_frame.shape[1] % tile_width
71
+ pad_vision_frame = np.pad(input_frame, ((size[2], pad_size_bottom), (size[2], pad_size_right), (0, 0)))
72
+ pad_height, pad_width = pad_vision_frame.shape[:2]
73
+ row_range = range(size[2], pad_height - size[2], tile_width)
74
+ col_range = range(size[2], pad_width - size[2], tile_width)
75
+ tile_frames = []
76
+
77
+ for row_frame in row_range:
78
+ top = row_frame - size[2]
79
+ bottom = row_frame + size[2] + tile_width
80
+ for column_vision_frame in col_range:
81
+ left = column_vision_frame - size[2]
82
+ right = column_vision_frame + size[2] + tile_width
83
+ tile_frames.append(pad_vision_frame[top:bottom, left:right, :])
84
+ return tile_frames, pad_width, pad_height
85
+
86
+
87
+ def merge_tile_frames(self, tile_frames, temp_width : int, temp_height : int, pad_width : int, pad_height : int, size) -> Frame:
88
+ merge_frame = np.zeros((pad_height, pad_width, 3)).astype(np.uint8)
89
+ tile_width = tile_frames[0].shape[1] - 2 * size[2]
90
+ tiles_per_row = min(pad_width // tile_width, len(tile_frames))
91
+
92
+ for index, tile_frame in enumerate(tile_frames):
93
+ tile_frame = tile_frame[size[2]:-size[2], size[2]:-size[2]]
94
+ row_index = index // tiles_per_row
95
+ col_index = index % tiles_per_row
96
+ top = row_index * tile_frame.shape[0]
97
+ bottom = top + tile_frame.shape[0]
98
+ left = col_index * tile_frame.shape[1]
99
+ right = left + tile_frame.shape[1]
100
+ merge_frame[top:bottom, left:right, :] = tile_frame
101
+ merge_frame = merge_frame[size[1] : size[1] + temp_height, size[1]: size[1] + temp_width, :]
102
+ return merge_frame
103
+
104
+
105
+ def Run(self, temp_frame: Frame) -> Frame:
106
+ size = (128, 8, 2)
107
+ temp_height, temp_width = temp_frame.shape[:2]
108
+ upscale_tile_frames, pad_width, pad_height = self.create_tile_frames(temp_frame, size)
109
+
110
+ for index, tile_frame in enumerate(upscale_tile_frames):
111
+ tile_frame = self.prepare_tile_frame(tile_frame)
112
+ with self.THREAD_LOCK_UPSCALE:
113
+ self.io_binding.bind_cpu_input(self.model_inputs[0].name, tile_frame)
114
+ self.model_upscale.run_with_iobinding(self.io_binding)
115
+ ort_outs = self.io_binding.copy_outputs_to_cpu()
116
+ result = ort_outs[0]
117
+ upscale_tile_frames[index] = self.normalize_tile_frame(result)
118
+ final_frame = self.merge_tile_frames(upscale_tile_frames, temp_width * self.scale
119
+ , temp_height * self.scale
120
+ , pad_width * self.scale, pad_height * self.scale
121
+ , (size[0] * self.scale, size[1] * self.scale, size[2] * self.scale))
122
+ return final_frame.astype(np.uint8)
123
+
124
+
125
+
126
+ def Release(self):
127
+ del self.model_upscale
128
+ self.model_upscale = None
129
+ del self.io_binding
130
+ self.io_binding = None
131
+
roop/processors/Mask_Clip2Seg.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+ import threading
5
+ from torchvision import transforms
6
+ from clip.clipseg import CLIPDensePredT
7
+ import numpy as np
8
+
9
+ from roop.typing import Frame
10
+
11
+ THREAD_LOCK_CLIP = threading.Lock()
12
+
13
+
14
+ class Mask_Clip2Seg():
15
+ plugin_options:dict = None
16
+ model_clip = None
17
+
18
+ processorname = 'clip2seg'
19
+ type = 'mask'
20
+
21
+
22
+ def Initialize(self, plugin_options:dict):
23
+ if self.plugin_options is not None:
24
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
25
+ self.Release()
26
+
27
+ self.plugin_options = plugin_options
28
+ if self.model_clip is None:
29
+ self.model_clip = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, complex_trans_conv=True)
30
+ self.model_clip.eval();
31
+ self.model_clip.load_state_dict(torch.load('models/CLIP/rd64-uni-refined.pth', map_location=torch.device('cpu')), strict=False)
32
+
33
+ device = torch.device(self.plugin_options["devicename"])
34
+ self.model_clip.to(device)
35
+
36
+
37
+ def Run(self, img1, keywords:str) -> Frame:
38
+ if keywords is None or len(keywords) < 1 or img1 is None:
39
+ return img1
40
+
41
+ source_image_small = cv2.resize(img1, (256,256))
42
+
43
+ img_mask = np.full((source_image_small.shape[0],source_image_small.shape[1]), 0, dtype=np.float32)
44
+ mask_border = 1
45
+ l = 0
46
+ t = 0
47
+ r = 1
48
+ b = 1
49
+
50
+ mask_blur = 5
51
+ clip_blur = 5
52
+
53
+ img_mask = cv2.rectangle(img_mask, (mask_border+int(l), mask_border+int(t)),
54
+ (256 - mask_border-int(r), 256-mask_border-int(b)), (255, 255, 255), -1)
55
+ img_mask = cv2.GaussianBlur(img_mask, (mask_blur*2+1,mask_blur*2+1), 0)
56
+ img_mask /= 255
57
+
58
+
59
+ input_image = source_image_small
60
+
61
+ transform = transforms.Compose([
62
+ transforms.ToTensor(),
63
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
64
+ transforms.Resize((256, 256)),
65
+ ])
66
+ img = transform(input_image).unsqueeze(0)
67
+
68
+ thresh = 0.5
69
+ prompts = keywords.split(',')
70
+ with THREAD_LOCK_CLIP:
71
+ with torch.no_grad():
72
+ preds = self.model_clip(img.repeat(len(prompts),1,1,1), prompts)[0]
73
+ clip_mask = torch.sigmoid(preds[0][0])
74
+ for i in range(len(prompts)-1):
75
+ clip_mask += torch.sigmoid(preds[i+1][0])
76
+
77
+ clip_mask = clip_mask.data.cpu().numpy()
78
+ np.clip(clip_mask, 0, 1)
79
+
80
+ clip_mask[clip_mask>thresh] = 1.0
81
+ clip_mask[clip_mask<=thresh] = 0.0
82
+ kernel = np.ones((5, 5), np.float32)
83
+ clip_mask = cv2.dilate(clip_mask, kernel, iterations=1)
84
+ clip_mask = cv2.GaussianBlur(clip_mask, (clip_blur*2+1,clip_blur*2+1), 0)
85
+
86
+ img_mask *= clip_mask
87
+ img_mask[img_mask<0.0] = 0.0
88
+ return img_mask
89
+
90
+
91
+
92
+ def Release(self):
93
+ self.model_clip = None
94
+
roop/processors/Mask_XSeg.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import onnxruntime
4
+ import threading
5
+ import roop.globals
6
+
7
+ from roop.typing import Frame
8
+ from roop.utilities import resolve_relative_path
9
+
10
+ THREAD_LOCK_CLIP = threading.Lock()
11
+
12
+
13
+ class Mask_XSeg():
14
+ plugin_options:dict = None
15
+
16
+ model_xseg = None
17
+
18
+ processorname = 'mask_xseg'
19
+ type = 'mask'
20
+
21
+
22
+ def Initialize(self, plugin_options:dict):
23
+ if self.plugin_options is not None:
24
+ if self.plugin_options["devicename"] != plugin_options["devicename"]:
25
+ self.Release()
26
+
27
+ self.plugin_options = plugin_options
28
+ if self.model_xseg is None:
29
+ model_path = resolve_relative_path('../models/xseg.onnx')
30
+ onnxruntime.set_default_logger_severity(3)
31
+ self.model_xseg = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
32
+ self.model_inputs = self.model_xseg.get_inputs()
33
+ self.model_outputs = self.model_xseg.get_outputs()
34
+
35
+ # replace Mac mps with cpu for the moment
36
+ self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
37
+
38
+
39
+ def Run(self, img1, keywords:str) -> Frame:
40
+ temp_frame = cv2.resize(img1, (256, 256), cv2.INTER_CUBIC)
41
+ temp_frame = temp_frame.astype('float32') / 255.0
42
+ temp_frame = temp_frame[None, ...]
43
+ io_binding = self.model_xseg.io_binding()
44
+ io_binding.bind_cpu_input(self.model_inputs[0].name, temp_frame)
45
+ io_binding.bind_output(self.model_outputs[0].name, self.devicename)
46
+ self.model_xseg.run_with_iobinding(io_binding)
47
+ ort_outs = io_binding.copy_outputs_to_cpu()
48
+ result = ort_outs[0][0]
49
+ result = np.clip(result, 0, 1.0)
50
+ result[result < 0.1] = 0
51
+ # invert values to mask areas to keep
52
+ result = 1.0 - result
53
+ return result
54
+
55
+
56
+ def Release(self):
57
+ del self.model_xseg
58
+ self.model_xseg = None
59
+
60
+
roop/processors/__init__.py ADDED
File without changes
roop/template_parser.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from datetime import datetime
3
+
4
+ template_functions = {
5
+ "timestamp": lambda data: str(int(datetime.now().timestamp())),
6
+ "i": lambda data: data.get("index", False),
7
+ "file": lambda data: data.get("file", False),
8
+ "date": lambda data: datetime.now().strftime("%Y-%m-%d"),
9
+ "time": lambda data: datetime.now().strftime("%H-%M-%S"),
10
+ }
11
+
12
+
13
+ def parse(text: str, data: dict):
14
+ pattern = r"\{([^}]+)\}"
15
+
16
+ matches = re.findall(pattern, text)
17
+
18
+ for match in matches:
19
+ replacement = template_functions[match](data)
20
+ if replacement is not False:
21
+ text = text.replace(f"{{{match}}}", replacement)
22
+
23
+ return text
roop/typing.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+
3
+ from insightface.app.common import Face
4
+ from roop.FaceSet import FaceSet
5
+ import numpy
6
+
7
+ Face = Face
8
+ FaceSet = FaceSet
9
+ Frame = numpy.ndarray[Any, Any]