import os import json import random import librosa import numpy as np import gradio as gr from typing import Any, List, Dict, Tuple from utils import meow_stretch, get_word_lengths from config import config, BaseConfig COUNTER = 0 ''' Gradio Input/Output Configurations ''' inputs: str = 'text' outputs: gr.Audio = gr.Audio() def load_meows(cfg: BaseConfig) -> List[Dict[str, Any]]: meow_dir = os.path.dirname(cfg.manifest_path) with open(cfg.manifest_path, mode='r') as fr: lines = fr.readlines() items = [] for line in lines: item = json.loads(line) item['audio'], item['rate'] = librosa.load(os.path.join(meow_dir, item['audio_filepath']), sr=None) items.append(item) return items def extract_meows_weights(items: List[Dict[str, Any]]) -> Tuple[List[np.ndarray], List[float]]: meows = [item['audio'] for item in items] weights = [item['weight'] for item in items] return meows, weights ''' Load meows ''' meow_items = load_meows(config) meows, weights = extract_meows_weights(meow_items) def predict(text: str) -> str: word_lengths = get_word_lengths(text) selected_meows = random.choices(meows, weights=weights, k=len(word_lengths)) transformed_meows = [ meow_stretch( meow, wl, init_factor=config.init_factor, add_factor=config.add_factor, power_factor=config.power_factor ) for meow, wl in zip(selected_meows, word_lengths) ] result_meows = np.concatenate(transformed_meows, axis=0) return (config.sample_rate, result_meows)