File size: 10,813 Bytes
579038a 4c7ba35 579038a c7722c9 44fec10 4c7ba35 579038a 4c7ba35 579038a 40cf0a9 eb2ec81 579038a 5362085 579038a 5362085 579038a 5362085 579038a 5362085 579038a 8ebd080 89b637e 4c7ba35 89b637e 4c7ba35 579038a 5362085 2d842c0 579038a 89b637e 4c7ba35 579038a 4751587 c7722c9 89b637e c7722c9 89b637e 3dac419 89b637e 5362085 89b637e c7722c9 89b637e c7722c9 579038a c9e528b 2796a2f c9e528b 579038a c9e528b c7722c9 8ebd080 579038a c9e528b c7722c9 579038a c7722c9 579038a 44fec10 5ac0b43 41dcf3f 5ac0b43 41dcf3f 5ac0b43 41dcf3f 579038a 697c0c9 8ebd080 2734877 697c0c9 579038a 872f46c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import os
import gradio as gr
import openai
from langdetect import detect
import json
import requests
# Set up OpenAI API with your custom endpoint
openai.api_key = os.getenv("API_KEY")
openai.api_base = "https://api.groq.com/openai/v1"
# Import datasets from the Python files in your project
from company_profile import company_profile
from workforce import workforce
from financials import financials
from investors import investors
from products_services import products_services
from market_trends import market_trends
from partnerships_collaborations import partnerships_collaborations
from legal_compliance import legal_compliance
from customer_insights import customer_insights
from news_updates import news_updates
from social_media import social_media
from tech_stack import tech_stack
# Command handler for specific queries
def command_handler(user_input):
if user_input.lower().startswith("define "):
term = user_input[7:].strip()
definitions = {
"market analysis": (
"Market analysis evaluates a business's position by studying competitors, trends, and customer behavior. "
"It helps in crafting strategies for growth. 📊"
),
"financials": (
"Financial analysis examines profit margins, revenues, and expenses to determine fiscal health and sustainability. 💵"
),
"investors": (
"Investors provide capital in exchange for equity or debt, enabling business growth and scaling. 🏦"
)
}
return definitions.get(term.lower(), "Definition not available. Let’s dive into your query!")
return None
# Function to get the response from OpenAI with professionalism and energy
def get_groq_response(message, user_language, custom_data=None):
try:
# If custom data is available, include it in the AI prompt
if custom_data:
prompt = f"Use the following information for analysis: {custom_data}. Then answer the user's query: {message}"
else:
prompt = message
response = openai.ChatCompletion.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": (
f"You are a professional and concise Private Market Analyst AI. Your task is to explain market trends, "
f"company insights, and investment strategies in a clear, impactful, and concise manner. "
f"Keep the responses brief yet informative, focusing on the key points. Always maintain professionalism. "
f"1. **Accuracy**: Provide reliable, data-backed insights based on market trends, company profiles, and financial data.\n"
f"2. **Real-Time Updates**: Continuously track and update insights from the latest company developments, financial reports, and market movements.\n"
f"3. **Customizable**: Offer tailored responses based on user preferences such as specific industries, risk levels, and deal types.\n"
f"4. **Confidentiality**: Ensure that all information and insights provided remain secure and confidential, respecting user privacy.\n"
f"5. **Explainability**: Provide clear, understandable, and actionable explanations for every AI-generated insight, ensuring users can easily follow the rationale behind the analysis.\n\n"
f"Your primary goal is to assist users by providing accurate, personalized, and actionable insights related to private markets. Always maintain professionalism and conciseness. Ensure that responses are easy to interpret, and avoid jargon whenever possible.\n\n"
)
},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message["content"]
except Exception as e:
return f"Oops, looks like something went wrong! Error: {str(e)}"
# Function to format the response data in a readable and highlighted form
def format_response(data):
if not data:
return "No data available for this query."
formatted_response = ""
if isinstance(data, dict):
formatted_response += "### Key Insights:\n\n"
for key, value in data.items():
if isinstance(value, dict):
# For nested dictionaries, add a heading for the sub-keys
formatted_response += f"**{key.capitalize()}**:\n"
for sub_key, sub_value in value.items():
formatted_response += f" - **{sub_key.capitalize()}**: {sub_value}\n"
elif isinstance(value, list):
# If the value is a list, show it as a bullet-point list
formatted_response += f"**{key.capitalize()}**:\n"
for idx, item in enumerate(value):
formatted_response += f" - {item}\n"
else:
# For other types of data, simply display key-value pairs
formatted_response += f"**{key.capitalize()}**: {value}\n"
elif isinstance(data, list):
formatted_response += "### Insights:\n\n" + "\n".join(f"{idx+1}. {item}" for idx, item in enumerate(data))
else:
formatted_response = f"### Key Insight:\n\n{data}"
return formatted_response.strip()
def market_analysis_agent(user_input, history=[]):
try:
# Detect the language of the user's input
detected_language = detect(user_input)
user_language = "Hindi" if detected_language == "hi" else "English"
# Handle special commands like "Define [term]"
command_response = command_handler(user_input)
if command_response:
history.append((user_input, command_response))
return history, history
# Check if the query is related to cryptocurrency
if "bitcoin" in user_input.lower() or "crypto" in user_input.lower():
# Trigger the fetch_crypto_trends function
crypto_data = fetch_crypto_trends(symbol="BTC", market="EUR", api_key="G3NRIAU5OWJZXS2E")
formatted_response = format_response(crypto_data)
else:
# Handle other predefined market queries
if "company" in user_input.lower():
response = company_profile
elif "financials" in user_input.lower():
response = financials
elif "investors" in user_input.lower():
response = investors
elif "products" in user_input.lower():
response = products_services
elif "news" in user_input.lower() or "updates" in user_input.lower():
response = news_updates
elif "legal" in user_input.lower() or "compliance" in user_input.lower():
response = legal_compliance
elif "social media" in user_input.lower() or "instagram" in user_input.lower() or "linkedin" in user_input.lower() or "twitter" in user_input.lower():
response = social_media
elif "workforce" in user_input.lower():
response = workforce
else:
# Get dynamic AI response if query doesn't match predefined terms
response = get_groq_response(user_input, user_language, custom_data=json.dumps(company_profile))
# Format the response for easy readability and highlighting
formatted_response = format_response(response)
# Add some professional and engaging replies for the user
cool_replies = [
"Insightful observation. Let’s keep the momentum going. 📊",
"Good question! Let’s extract deeper business insights. 📈",
# Add your other cool replies here
]
formatted_response += f"\n{cool_replies[hash(user_input) % len(cool_replies)]}"
# Add to chat history
history.append((user_input, formatted_response))
return history, history
except Exception as e:
return [(user_input, f"Oops, something went wrong: {str(e)}")], history
def fetch_crypto_trends(symbol="BTC", market="USD", api_key="G3NRIAU5OWJZXS2E"):
url = f'https://www.alphavantage.co/query?function=DIGITAL_CURRENCY_DAILY&symbol={symbol}&market={market}&apikey={api_key}'
try:
response = requests.get(url)
response.raise_for_status() # Raise exception for HTTP errors
data = response.json()
# Check if the expected key exists in the response
time_series_key = f"Time Series (Digital Currency Daily)"
if time_series_key in data:
trends = data[time_series_key]
latest_date = max(trends.keys()) # Get the most recent date
latest_data = trends[latest_date]
# Check if the required keys exist in the latest data
if "1a. open (USD)" in latest_data:
return {
"date": latest_date,
"open": latest_data["1a. open (USD)"],
"high": latest_data["2a. high (USD)"],
"low": latest_data["3a. low (USD)"],
"close": latest_data["4a. close (USD)"],
"volume": latest_data["5. volume"],
"market_cap": latest_data["6. market cap (USD)"]
}
else:
return "Required data (1a. open (USD)) is missing in the response. Check the API response structure."
else:
return "No cryptocurrency data available. Check your API key or query parameters."
except Exception as e:
return f"Error fetching cryptocurrency trends: {str(e)}"
# Gradio Interface setup
chat_interface = gr.Interface(
fn=market_analysis_agent, # Function for handling user interaction
inputs=["text", "state"], # Inputs: user message and chat history
outputs=["chatbot", "state"], # Outputs: chatbot messages and updated history
live=False, # Disable live responses; show after submit
title="Private Market AI Agent", # Title of the app
description=(
"Welcome to your professional Private Market Analyst AI Agent by Satyam! 📊\n\n"
"Ask me anything about market trends, company profiles, financial analysis, investors, and more! "
"I’ll provide you with concise insights that are informative and to the point, helping you make well-informed decisions. \n\n"
"Let's break down market complexities with clarity. 🔍\n\n"
"We Transform Data into Deal"
)
)
# Launch the Gradio interface
if __name__ == "__main__":
chat_interface.launch(share=True) |