# -*- coding: utf-8 -*- """ Created on Tue Dec 27 08:48:25 2022 @author: Usuario """ from keras.models import load_model import tensorflow as tf from tensorflow.keras.utils import load_img, img_to_array, array_to_img from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg19 import preprocess_input, decode_predictions import matplotlib.pyplot as plt import numpy as np from IPython.display import Image, display import matplotlib.cm as cm #http://gradcam.cloudcv.org/ #https://keras.io/examples/vision/grad_cam/ def get_img_array(img_path, size): # `img` is a PIL image of size 299x299 img = load_img(img_path, target_size=size) # `array` is a float32 Numpy array of shape (299, 299, 3) array = img_to_array(img) # We add a dimension to transform our array into a "batch" # of size (1, 299, 299, 3) array = np.expand_dims(array, axis=0) return array def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None): # First, we create a model that maps the input image to the activations # of the last conv layer as well as the output predictions grad_model = tf.keras.models.Model( [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output] ) # Then, we compute the gradient of the top predicted class for our input image # with respect to the activations of the last conv layer with tf.GradientTape() as tape: last_conv_layer_output, preds = grad_model(img_array) if pred_index is None: pred_index = tf.argmax(preds[0]) class_channel = preds[:, pred_index] # This is the gradient of the output neuron (top predicted or chosen) # with regard to the output feature map of the last conv layer grads = tape.gradient(class_channel, last_conv_layer_output) # This is a vector where each entry is the mean intensity of the gradient # over a specific feature map channel pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) # We multiply each channel in the feature map array # by "how important this channel is" with regard to the top predicted class # then sum all the channels to obtain the heatmap class activation last_conv_layer_output = last_conv_layer_output[0] heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis] heatmap = tf.squeeze(heatmap) # For visualization purpose, we will also normalize the heatmap between 0 & 1 heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap) return heatmap.numpy() # Generate class activation heatmap #heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name) def save_and_display_gradcam(img_path, heatmap, alpha = 0.4): # Load the original image img = load_img(img_path) img = img_to_array(img) # Rescale heatmap to a range 0-255 heatmap = np.uint8(255 * heatmap) # Use jet colormap to colorize heatmap jet = cm.get_cmap("jet") # Use RGB values of the colormap jet_colors = jet(np.arange(256))[:, :3] jet_heatmap = jet_colors[heatmap] # Create an image with RGB colorized heatmap jet_heatmap = array_to_img(jet_heatmap) jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0])) jet_heatmap = img_to_array(jet_heatmap) # Superimpose the heatmap on original image superimposed_img = jet_heatmap * alpha + img superimposed_img = array_to_img(superimposed_img) # Save the superimposed image #superimposed_img.save('') # Display Grad CAM return superimposed_img #display(Image(superimposed_img)) #save_and_display_gradcam(path_image+name_image, heatmap)