import gradio as gr from huggingface_hub import InferenceClient import os import openai import pandas as pd import faiss import pickle from sentence_transformers import SentenceTransformer embedding_model = SentenceTransformer('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True) openai.api_key = os.getenv("OPENAI_API_KEY") db_index = faiss.read_index("db_index.faiss") df = pd.read_csv('cleaned_data.csv') with open('metadata_info.pkl', 'rb') as file: metadata_info = pickle.load(file) def search(query): cleaned_query = query query_embedding = embedding_model.encode(cleaned_query).reshape(1, -1).astype('float32') D, I = db_index.search(query_embedding, k=10) results = [] for idx in I[0]: if idx < 3327: doc_index = idx results.append({ 'type': 'metadata', 'title': df.iloc[doc_index]['title'], 'author': df.iloc[doc_index]['author'], 'publish_date': df.iloc[doc_index]['publish_date'], 'full_text': df.iloc[doc_index]['full_text'], 'source': df.iloc[doc_index]['url'] }) else: chunk_index = idx - 3327 metadata = metadata_info[chunk_index] doc_index = metadata['index'] chunk_text = metadata['chunk'] results.append({ 'type': 'content', 'title': df.iloc[doc_index]['title'], 'author': df.iloc[doc_index]['author'], 'publish_date': df.iloc[doc_index]['publish_date'], 'content': chunk_text, 'source': df.iloc[doc_index]['url'] }) return results def generate_answer(query): prompt = f""" Based on the following query from a user, please generate a detailed answer based on the context focusing on which is the best based on the query. You should responsd as you are a news and politician expert agent and are conversing with the user in a nice cordial way. If the query question is not in the context say I don't know, and always provide the url as the source of the information. Remove the special characters and (/n ) , make the output clean and concise. ########### query: "{query}" ######## context:" "{search(query)}" ##### Return in Markdown format with each hotel highlighted. """ messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] response = openai.ChatCompletion.create( model="gpt-4o-mini", max_tokens=1500, n=1, stop=None, temperature=0.2, #higher temperature means more creative or more hallucination messages = messages ) # Extract the generated response from the API response generated_text = response.choices[0].message['content'].strip() return generated_text """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()