import os import openai import time import wikipedia import random import re import requests from bs4 import BeautifulSoup import os import glob from natsort import natsorted import requests from bs4 import BeautifulSoup import xml.etree.ElementTree as ET from pytrials.client import ClinicalTrials from Bio import Entrez import pandas as pd import numpy as np import time #from langchain.agents import create_pandas_dataframe_agent from langchain_experimental.agents import create_pandas_dataframe_agent from langchain.llms import OpenAI # APIキーの設定 openai.api_key = os.environ['OPENAI_API_KEY'] gptengine="gpt-3.5-turbo" """def get_selected_fileds(texts): ct = ClinicalTrials() input_name = texts.replace(' ' , "+") corona_fields = ct.get_study_fields( search_expr="%s SEARCH[Location](AREA[LocationCountry]Japan AND AREA[LocationStatus]Recruiting)"%(input_name), fields=["NCTId", "Condition", "BriefTitle",'BriefSummary','EligibilityCriteria'], max_studies=500, fmt="csv") return corona_fields""" def get_retriever_str(fields): retriever_str='' for i in range(1,len(fields)): colnames = fields[0] targetCol = fields[i] for f in range(len(fields[0])): retriever_str+=colnames[f] + ":" + targetCol[f] +"\n" retriever_str+='\n' return retriever_str def get_chanked_retriever(fields): retriever_list =[] for i in range(1,len(fields)): retriever_str='' colnames = fields[0] targetCol = fields[i] for f in range(len(fields[0])): retriever_str+=colnames[f] + ":" + targetCol[f] +"\n" retriever_list.append(retriever_str) return retriever_list from pytrials.client import ClinicalTrials def get_selected_fields(texts, split_criteria=False, split_word_number = False, split_number=700): ct = ClinicalTrials() input_name = texts.replace(' ', "+") corona_fields = ct.get_study_fields( search_expr="%s SEARCH[Location](AREA[LocationCountry]Japan AND AREA[LocationStatus]Recruiting)" % (input_name), fields=["NCTId", "Condition", "BriefTitle", 'BriefSummary', 'EligibilityCriteria'], max_studies=500, fmt="csv") if split_criteria: new_fields = [] # 検索対象の文字列 target_string1 = 'Exclusion Criteria' target_string2 = 'Exclusion criteria' # 各要素で検索対象の文字列を探し、直前で分割して新しいリストに格納 for corona_field in corona_fields: new_list = [] for item in corona_field: if target_string1 in item: split_position = item.index(target_string1) new_list.append(item[:split_position]) new_list.append(item[split_position:]) elif target_string2 in item: split_position = item.index(target_string2) new_list.append(item[:split_position]) new_list.append(item[split_position:]) else: new_list.append(item) new_fields.append(new_list) else: new_fields = corona_fields if split_word_number: split_fields = [] for new_field in new_fields: new_list= [] # 各要素を調べて、700文字以上であれば分割し、新しいリストに格納 for item in new_field: item_length = len(item) if item_length > split_number: num_parts = -(-item_length // split_number) # 向上の除算を用いて分割数を計算 for i in range(num_parts): start_index = i * split_number end_index = min((i + 1) * split_number, item_length) # 文字列の終わりを超えないように調整 new_list.append(item[start_index:end_index]) else: new_list.append(item) split_fields.append(new_list) new_fields = split_fields return new_fields def print_agent_results(df, Ids, interesteds = ['Condition', 'BriefTitle', 'BriefSummary', 'EligibilityCriteria'], translater=None): results = "" for Id in Ids: print("%s\n"%Id) sdf = df[df['NCTId'] == Id] for interested in interesteds: # 最初の要素を取得 results += '%s: \n %s \n' % (interested, sdf[interested].iloc[0]) #print('%s: \n %s \n' % (interested, sdf[interested].iloc[0])) if translater: to_be_printed = translater.translate(results) else: to_be_printed =results print(to_be_printed) def search(query): Entrez.email = os.getenv('MAIL_ADRESS') #Entrez.email='sing.monotonyflower@gmail.com' handle = Entrez.esearch(db='pubmed', sort = 'relevance', retmax = '20', retmode = 'xml', term = query) results = Entrez.read(handle) return results def fetch_details(id_list): ids = ','.join(id_list) Entrez.email = os.getenv('MAIL_ADRESS') #Entrez.email = 'sing.monotonyflower@gmail.com' handle = Entrez.efetch(db = 'pubmed', retmode = 'xml', id = ids) results = Entrez.read(handle) return results '''def generate(prompt,engine=None): if engine is None: engine=gptengine while True: #OpenAI APIが落ちてる時に無限リトライするので注意 try: response = openai.ChatCompletion.create( model=engine, messages=[ {"role": "system", "content": "You are useful assistant"}, {"role": "user", "content":prompt}, ] ) result=response["choices"][0]["message"]["content"] return result except Exception as e: print(e) print("リトライ") time.sleep(30) pass ''' def generate(prompt,engine=None): if engine is None: engine=gptengine while True: #OpenAI APIが落ちてる時に無限リトライするので注意 try: response = openai.chat.completions.create( model=engine, messages=[ {"role": "system", "content": "You are useful assistant"}, {"role": "user", "content":prompt}, ] ) #result=response["choices"][0]["message"]["content"] result=response.choices[0].message.content return result except Exception as e: print(e) print("リトライ") time.sleep(30) pass def GetPubmedSummaryDf(studies): title_list= [] abstract_list=[] journal_list = [] language_list =[] pubdate_year_list = [] pubdate_month_list = [] studiesIdList = studies['IdList'] chunk_size = 10000 for chunk_i in range(0, len(studiesIdList), chunk_size): chunk = studiesIdList[chunk_i:chunk_i + chunk_size] try: papers = fetch_details(chunk) for i, paper in enumerate(papers['PubmedArticle']): title_list.append(paper['MedlineCitation']['Article']['ArticleTitle']) try: abstract_list.append(paper['MedlineCitation']['Article']['Abstract']['AbstractText'][0]) except: abstract_list.append('No Abstract') journal_list.append(paper['MedlineCitation']['Article']['Journal']['Title']) language_list.append(paper['MedlineCitation']['Article']['Language'][0]) try: pubdate_year_list.append(paper['MedlineCitation']['Article']['Journal']['JournalIssue']['PubDate']['Year']) except: pubdate_year_list.append('No Data') try: pubdate_month_list.append(paper['MedlineCitation']['Article']['Journal']['JournalIssue']['PubDate']['Month']) except: pubdate_month_list.append('No Data') except: # occasionally a chunk might annoy your parser pass df = pd.DataFrame(list(zip( title_list, abstract_list, journal_list, language_list, pubdate_year_list, pubdate_month_list)), columns=['Title', 'Abstract', 'Journal', 'Language', 'Year','Month']) return df, abstract_list def ClinicalAgent(fileds, verbose=False): df = pd.DataFrame.from_records(fileds[1:], columns=fileds[0]) return create_pandas_dataframe_agent(OpenAI(temperature=0, model='gpt-3.5-turbo-16k'), df, verbose=verbose) def GetNCTID(results): # NCTで始まる単語を検索する正規表現 pattern = r'\bNCT\d+\b' # 正規表現を使って単語を抽出 nct_words = re.findall(pattern,results) return nct_words