Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from OpenAITools.FetchTools import fetch_clinical_trials | |
from langchain_openai import ChatOpenAI | |
from langchain_groq import ChatGroq | |
from OpenAITools.CrinicalTrialTools import SimpleClinicalTrialAgent, GraderAgent, LLMTranslator, generate_ex_question_English | |
from OpenAITools.JRCTTools import get_matched_df,GetJRCTCriteria | |
from sentence_transformers import SentenceTransformer | |
from sentence_transformers import util | |
# モデルとエージェントの初期化 | |
groq = ChatGroq(model_name="llama3-70b-8192", temperature=0) | |
translator = LLMTranslator(groq) | |
CriteriaCheckAgent = SimpleClinicalTrialAgent(groq) | |
grader_agent = GraderAgent(groq) | |
selectionModel = SentenceTransformer('pritamdeka/S-PubMedBert-MS-MARCO') | |
# データフレームを生成する関数 | |
def generate_dataframe(age, sex, tumor_type, GeneMutation, Meseable, Biopsiable): | |
# 日本語の腫瘍タイプを英語に翻訳 | |
TumorName = translator.translate(tumor_type) | |
# 質問文を生成 | |
ex_question = generate_ex_question_English(age, sex, TumorName, GeneMutation, Meseable, Biopsiable) | |
# 臨床試験データの取得 | |
basedf = pd.read_csv("ClinicalTrialCSV/JRCT20241215CancerPost.csv", index_col=0) | |
df = get_matched_df(basedf=basedf, query=TumorName, model=selectionModel, threshold=0.925) | |
df['AgentJudgment'] = None | |
df['AgentGrade'] = None | |
# 臨床試験の適格性の評価 | |
progress = gr.Progress(track_tqdm=True) | |
for i in range(len(df)): | |
TargetCriteria = GetJRCTCriteria(df, i) | |
AgentJudgment = CriteriaCheckAgent.evaluate_eligibility(TargetCriteria, ex_question) | |
AgentGrade = grader_agent.evaluate_eligibility(AgentJudgment) | |
# df.locを使って値を代入(行・列名で指定) | |
df.loc[df.index[i], 'AgentJudgment'] = AgentJudgment | |
df.loc[df.index[i], 'AgentGrade'] = AgentGrade | |
progress((i + 1) / len(df)) | |
# 列を指定した順に並び替え | |
columns_order = ['JRCT ID', 'Title', '研究・治験の目的','AgentJudgment', 'AgentGrade','主たる選択基準', '主たる除外基準','Inclusion Criteria','Exclusion Criteria','NCT No', 'JapicCTI No'] | |
df = df[columns_order] | |
return df, df # フィルタ用と表示用にデータフレームを返す | |
# 特定のAgentGrade(yes, no, unclear)に基づいて行をフィルタリングする関数 | |
def filter_rows_by_grade(original_df, grade): | |
df_filtered = original_df[original_df['AgentGrade'] == grade] | |
return df_filtered, df_filtered | |
# CSVとして保存しダウンロードする関数 | |
def download_filtered_csv(df): | |
file_path = "filtered_data.csv" | |
df.to_csv(file_path, index=False) | |
return file_path | |
# 全体結果をCSVとして保存しダウンロードする関数 | |
def download_full_csv(df): | |
file_path = "full_data.csv" | |
df.to_csv(file_path, index=False) | |
return file_path | |
# Gradioインターフェースの作成 | |
with gr.Blocks() as demo: | |
gr.Markdown("## 臨床試験適格性評価インターフェース") | |
# 各種入力フィールド | |
age_input = gr.Textbox(label="Age", placeholder="例: 65") | |
sex_input = gr.Dropdown(choices=["男性", "女性"], label="Sex") | |
tumor_type_input = gr.Textbox(label="Tumor Type", placeholder="例: gastric cancer, 日本でも良いですが英語の方が精度が高いです。") | |
gene_mutation_input = gr.Textbox(label="Gene Mutation", placeholder="例: HER2") | |
measurable_input = gr.Dropdown(choices=["有り", "無し", "不明"], label="Measurable Tumor") | |
biopsiable_input = gr.Dropdown(choices=["有り", "無し", "不明"], label="Biopsiable Tumor") | |
# データフレーム表示エリア | |
dataframe_output = gr.DataFrame() | |
original_df = gr.State() | |
filtered_df = gr.State() | |
# データフレーム生成ボタン | |
generate_button = gr.Button("Generate Clinical Trials Data") | |
# フィルタリングボタン | |
yes_button = gr.Button("Show Eligible Trials") | |
no_button = gr.Button("Show Ineligible Trials") | |
unclear_button = gr.Button("Show Unclear Trials") | |
# ダウンロードボタン | |
download_filtered_button = gr.Button("Download Filtered Data") | |
download_filtered_output = gr.File(label="Download Filtered Data") | |
download_full_button = gr.Button("Download Full Data") | |
download_full_output = gr.File(label="Download Full Data") | |
# ボタン動作の設定 | |
generate_button.click(fn=generate_dataframe, inputs=[age_input, sex_input, tumor_type_input, gene_mutation_input, measurable_input, biopsiable_input], outputs=[dataframe_output, original_df]) | |
yes_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State("yes")], outputs=[dataframe_output, filtered_df]) | |
no_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State("no")], outputs=[dataframe_output, filtered_df]) | |
unclear_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State("unclear")], outputs=[dataframe_output, filtered_df]) | |
download_filtered_button.click(fn=download_filtered_csv, inputs=filtered_df, outputs=download_filtered_output) | |
download_full_button.click(fn=download_full_csv, inputs=original_df, outputs=download_full_output) | |
if __name__ == "__main__": | |
demo.launch() | |