import zipfile def unzip_content(): try: # First try using Python's zipfile print("Attempting to unzip content using Python...") with zipfile.ZipFile('./content.zip', 'r') as zip_ref: zip_ref.extractall('.') except Exception as e: print(f"Python unzip failed: {str(e)}") try: # Fallback to system unzip command print("Attempting to unzip content using system command...") subprocess.run(['unzip', '-o', './content.zip'], check=True) except Exception as e: print(f"System unzip failed: {str(e)}") raise Exception("Failed to unzip content using both methods") print("Content successfully unzipped!") # Try to unzip content at startup try: unzip_content() except Exception as e: print(f"Warning: Could not unzip content: {str(e)}") import gradio as gr import numpy as np import torch import torchvision import torchvision.transforms import torchvision.transforms.functional import PIL import matplotlib.pyplot as plt import yaml from omegaconf import OmegaConf from CLIP import clip import os import sys #os.chdir('./taming-transformers') #from taming.models.vqgan import VQModel #os.chdir('..') taming_path = os.path.join(os.getcwd(), 'taming-transformers') sys.path.append(taming_path) from taming.models.vqgan import VQModel from PIL import Image import cv2 import imageio device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def create_video(images_list, video_name='morphing_video.mp4'): """Create video from a list of image tensors""" if not images_list: print("No images provided.") return None with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video: video_writer = imageio.get_writer(temp_video.name, fps=10) for img_tensor in images_list: # Convert tensor to numpy array img = img_tensor.cpu().numpy().transpose((1, 2, 0)) img = (img * 255).astype('uint8') video_writer.append_data(img) video_writer.close() return temp_video.name def save_from_tensors(tensor): """Process tensor and return the processed version""" img = tensor.clone() img = img.mul(255).byte() img = img.cpu().numpy().transpose((1, 2, 0)) return img def norm_data(data): return (data.clip(-1, 1) + 1) / 2 def setup_clip_model(): model, _ = clip.load('ViT-B/32', jit=False) model.eval().to(device) return model def setup_vqgan_model(config_path, checkpoint_path): config = OmegaConf.load(config_path) model = VQModel(**config.model.params) state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"] model.load_state_dict(state_dict, strict=False) return model.eval().to(device) def generator(x, model): x = model.post_quant_conv(x) x = model.decoder(x) return x def encode_text(text, clip_model): t = clip.tokenize(text).to(device) return clip_model.encode_text(t).detach().clone() def create_encoding(include, exclude, extras, clip_model): include_enc = [encode_text(text, clip_model) for text in include] exclude_enc = [encode_text(text, clip_model) for text in exclude] extras_enc = [encode_text(text, clip_model) for text in extras] return include_enc, exclude_enc, extras_enc def create_crops(img, num_crops=32, size1=225, noise_factor=0.05): aug_transform = torch.nn.Sequential( torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.RandomAffine(30, translate=(0.1, 0.1), fill=0) ).to(device) p = size1 // 2 img = torch.nn.functional.pad(img, (p, p, p, p), mode='constant', value=0) img = aug_transform(img) crop_set = [] for _ in range(num_crops): gap1 = int(torch.normal(1.2, .3, ()).clip(.43, 1.9) * size1) offsetx = torch.randint(0, int(size1 * 2 - gap1), ()) offsety = torch.randint(0, int(size1 * 2 - gap1), ()) crop = img[:, :, offsetx:offsetx + gap1, offsety:offsety + gap1] crop = torch.nn.functional.interpolate(crop, (224, 224), mode='bilinear', align_corners=True) crop_set.append(crop) img_crops = torch.cat(crop_set, 0) randnormal = torch.randn_like(img_crops, requires_grad=False) randstotal = torch.rand((img_crops.shape[0], 1, 1, 1)).to(device) img_crops = img_crops + noise_factor * randstotal * randnormal return img_crops def optimize_result(params, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc): alpha = 1 beta = 0.5 out = generator(params, vqgan_model) out = norm_data(out) out = create_crops(out) out = torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))(out) img_enc = clip_model.encode_image(out) final_enc = w1 * prompt + w2 * extras_enc[0] final_text_include_enc = final_enc / final_enc.norm(dim=-1, keepdim=True) final_text_exclude_enc = exclude_enc[0] main_loss = torch.cosine_similarity(final_text_include_enc, img_enc, dim=-1) penalize_loss = torch.cosine_similarity(final_text_exclude_enc, img_enc, dim=-1) return -alpha * main_loss.mean() + beta * penalize_loss.mean() def optimize(params, optimizer, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc): loss = optimize_result(params, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc) optimizer.zero_grad() loss.backward() optimizer.step() return loss def training_loop(params, optimizer, include_enc, exclude_enc, extras_enc, vqgan_model, clip_model, w1, w2, total_iter=200, show_step=1): res_img = [] res_z = [] for prompt in include_enc: for it in range(total_iter): loss = optimize(params, optimizer, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc) if it >= 0 and it % show_step == 0: with torch.no_grad(): generated = generator(params, vqgan_model) new_img = norm_data(generated[0].to(device)) res_img.append(new_img) res_z.append(params.clone().detach()) print(f"loss: {loss.item():.4f}\nno. of iteration: {it}") torch.cuda.empty_cache() return res_img, res_z def generate_art(include_text, exclude_text, extras_text, num_iterations): try: # Process the input prompts include = [x.strip() for x in include_text.split(',')] exclude = [x.strip() for x in exclude_text.split(',')] extras = [x.strip() for x in extras_text.split(',')] w1, w2 = 1.0, 0.9 # Setup models clip_model = setup_clip_model() vqgan_model = setup_vqgan_model("./models/vqgan_imagenet_f16_16384/configs/model.yaml", "./models/vqgan_imagenet_f16_16384/checkpoints/last.ckpt") # Parameters learning_rate = 0.1 batch_size = 1 wd = 0.1 size1, size2 = 225, 400 # Initialize parameters initial_image = PIL.Image.open('./gradient1.png') initial_image = initial_image.resize((size2, size1)) initial_image = torchvision.transforms.ToTensor()(initial_image).unsqueeze(0).to(device) with torch.no_grad(): z, _, _ = vqgan_model.encode(initial_image) params = torch.nn.Parameter(z).to(device) optimizer = torch.optim.AdamW([params], lr=learning_rate, weight_decay=wd) params.data = params.data * 0.6 + torch.randn_like(params.data) * 0.4 # Encode prompts include_enc, exclude_enc, extras_enc = create_encoding(include, exclude, extras, clip_model) # Run training loop res_img, res_z = training_loop(params, optimizer, include_enc, exclude_enc, extras_enc, vqgan_model, clip_model, w1, w2, total_iter=num_iterations) # Create video directly from tensors video_path = create_video(res_img) return video_path except Exception as e: raise e def gradio_interface(include_text, exclude_text, extras_text, num_iterations): try: video_path = generate_art(include_text, exclude_text, extras_text, int(num_iterations)) return video_path except Exception as e: return f"An error occurred: {str(e)}" # Try to unzip content at startup try: unzip_content() except Exception as e: print(f"Warning: Could not unzip content: {str(e)}") # Define and launch the Gradio app iface = gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox(label="Include Prompts (comma-separated)", value="desert, heavy rain, cactus"), gr.Textbox(label="Exclude Prompts (comma-separated)", value="confusing, blurry"), gr.Textbox(label="Extra Style Prompts (comma-separated)", value="desert, clear, detailed, beautiful, good shape, detailed"), gr.Number(label="Number of Iterations", value=200, minimum=1, maximum=1000) ], outputs=gr.Video(label="Generated Morphing Video", format="mp4", autoplay=True), title="VQGAN-CLIP Art Generator", css="allow", allow_flagging="never", description = """ Generate artistic videos using VQGAN-CLIP. Enter your prompts separated by commas and adjust the number of iterations. The model will generate a morphing video based on your inputs. Note: This application requires GPU access. Please either: 1. Use the Colab notebook available at https://github.com/SanshruthR/VQGAN-CLIP 2. Clone this space and enable GPU in your personal copy. """) if __name__ == "__main__": print("Checking GPU availability:", "GPU AVAILABLE" if torch.cuda.is_available() else "NO GPU FOUND") iface.launch()