Update main.py
Browse files
main.py
CHANGED
@@ -1,132 +1,132 @@
|
|
1 |
-
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
-
from fastapi.responses import JSONResponse
|
3 |
-
from pydantic import BaseModel
|
4 |
-
from typing import Optional
|
5 |
-
import base64
|
6 |
-
import io
|
7 |
-
from PIL import Image
|
8 |
-
import torch
|
9 |
-
import numpy as np
|
10 |
-
import os
|
11 |
-
|
12 |
-
# Existing imports
|
13 |
-
import numpy as np
|
14 |
-
import torch
|
15 |
-
from PIL import Image
|
16 |
-
import io
|
17 |
-
|
18 |
-
from utils import (
|
19 |
-
check_ocr_box,
|
20 |
-
get_yolo_model,
|
21 |
-
get_caption_model_processor,
|
22 |
-
get_som_labeled_img,
|
23 |
-
)
|
24 |
-
import torch
|
25 |
-
|
26 |
-
# yolo_model = get_yolo_model(model_path='/data/icon_detect/best.pt')
|
27 |
-
# caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="/data/icon_caption_florence")
|
28 |
-
|
29 |
-
from ultralytics import YOLO
|
30 |
-
|
31 |
-
# if not os.path.exists("/data/icon_detect"):
|
32 |
-
# os.makedirs("/data/icon_detect")
|
33 |
-
|
34 |
-
try:
|
35 |
-
yolo_model = YOLO("
|
36 |
-
except:
|
37 |
-
yolo_model = YOLO("
|
38 |
-
|
39 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
40 |
-
|
41 |
-
processor = AutoProcessor.from_pretrained(
|
42 |
-
"microsoft/Florence-2-base", trust_remote_code=True
|
43 |
-
)
|
44 |
-
|
45 |
-
try:
|
46 |
-
model = AutoModelForCausalLM.from_pretrained(
|
47 |
-
"
|
48 |
-
torch_dtype=torch.float16,
|
49 |
-
trust_remote_code=True,
|
50 |
-
).to("cuda")
|
51 |
-
except:
|
52 |
-
model = AutoModelForCausalLM.from_pretrained(
|
53 |
-
"
|
54 |
-
torch_dtype=torch.float16,
|
55 |
-
trust_remote_code=True,
|
56 |
-
)
|
57 |
-
caption_model_processor = {"processor": processor, "model": model}
|
58 |
-
print("finish loading model!!!")
|
59 |
-
|
60 |
-
app = FastAPI()
|
61 |
-
|
62 |
-
|
63 |
-
class ProcessResponse(BaseModel):
|
64 |
-
image: str # Base64 encoded image
|
65 |
-
parsed_content_list: str
|
66 |
-
label_coordinates: str
|
67 |
-
|
68 |
-
|
69 |
-
def process(
|
70 |
-
image_input: Image.Image, box_threshold: float, iou_threshold: float
|
71 |
-
) -> ProcessResponse:
|
72 |
-
image_save_path = "imgs/saved_image_demo.png"
|
73 |
-
image_input.save(image_save_path)
|
74 |
-
image = Image.open(image_save_path)
|
75 |
-
box_overlay_ratio = image.size[0] / 3200
|
76 |
-
draw_bbox_config = {
|
77 |
-
"text_scale": 0.8 * box_overlay_ratio,
|
78 |
-
"text_thickness": max(int(2 * box_overlay_ratio), 1),
|
79 |
-
"text_padding": max(int(3 * box_overlay_ratio), 1),
|
80 |
-
"thickness": max(int(3 * box_overlay_ratio), 1),
|
81 |
-
}
|
82 |
-
|
83 |
-
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
84 |
-
image_save_path,
|
85 |
-
display_img=False,
|
86 |
-
output_bb_format="xyxy",
|
87 |
-
goal_filtering=None,
|
88 |
-
easyocr_args={"paragraph": False, "text_threshold": 0.9},
|
89 |
-
use_paddleocr=True,
|
90 |
-
)
|
91 |
-
text, ocr_bbox = ocr_bbox_rslt
|
92 |
-
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
93 |
-
image_save_path,
|
94 |
-
yolo_model,
|
95 |
-
BOX_TRESHOLD=box_threshold,
|
96 |
-
output_coord_in_ratio=True,
|
97 |
-
ocr_bbox=ocr_bbox,
|
98 |
-
draw_bbox_config=draw_bbox_config,
|
99 |
-
caption_model_processor=caption_model_processor,
|
100 |
-
ocr_text=text,
|
101 |
-
iou_threshold=iou_threshold,
|
102 |
-
)
|
103 |
-
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
104 |
-
print("finish processing")
|
105 |
-
parsed_content_list_str = "\n".join(parsed_content_list)
|
106 |
-
|
107 |
-
# Encode image to base64
|
108 |
-
buffered = io.BytesIO()
|
109 |
-
image.save(buffered, format="PNG")
|
110 |
-
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
111 |
-
|
112 |
-
return ProcessResponse(
|
113 |
-
image=img_str,
|
114 |
-
parsed_content_list=str(parsed_content_list_str),
|
115 |
-
label_coordinates=str(label_coordinates),
|
116 |
-
)
|
117 |
-
|
118 |
-
|
119 |
-
@app.post("/process_image", response_model=ProcessResponse)
|
120 |
-
async def process_image(
|
121 |
-
image_file: UploadFile = File(...),
|
122 |
-
box_threshold: float = 0.05,
|
123 |
-
iou_threshold: float = 0.1,
|
124 |
-
):
|
125 |
-
try:
|
126 |
-
contents = await image_file.read()
|
127 |
-
image_input = Image.open(io.BytesIO(contents)).convert("RGB")
|
128 |
-
except Exception as e:
|
129 |
-
raise HTTPException(status_code=400, detail="Invalid image file")
|
130 |
-
|
131 |
-
response = process(image_input, box_threshold, iou_threshold)
|
132 |
-
return response
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from typing import Optional
|
5 |
+
import base64
|
6 |
+
import io
|
7 |
+
from PIL import Image
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
|
12 |
+
# Existing imports
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
from PIL import Image
|
16 |
+
import io
|
17 |
+
|
18 |
+
from utils import (
|
19 |
+
check_ocr_box,
|
20 |
+
get_yolo_model,
|
21 |
+
get_caption_model_processor,
|
22 |
+
get_som_labeled_img,
|
23 |
+
)
|
24 |
+
import torch
|
25 |
+
|
26 |
+
# yolo_model = get_yolo_model(model_path='/data/icon_detect/best.pt')
|
27 |
+
# caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="/data/icon_caption_florence")
|
28 |
+
|
29 |
+
from ultralytics import YOLO
|
30 |
+
|
31 |
+
# if not os.path.exists("/data/icon_detect"):
|
32 |
+
# os.makedirs("/data/icon_detect")
|
33 |
+
|
34 |
+
try:
|
35 |
+
yolo_model = YOLO("microsoft/OmniParser/icon_detect/model_v1_5.pt").to("cuda")
|
36 |
+
except:
|
37 |
+
yolo_model = YOLO("microsoft/OmniParser/icon_detect/model_v1_5.pt")
|
38 |
+
|
39 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
40 |
+
|
41 |
+
processor = AutoProcessor.from_pretrained(
|
42 |
+
"microsoft/Florence-2-base", trust_remote_code=True
|
43 |
+
)
|
44 |
+
|
45 |
+
try:
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
47 |
+
"microsoft/OmniParser/icon_caption_florence",
|
48 |
+
torch_dtype=torch.float16,
|
49 |
+
trust_remote_code=True,
|
50 |
+
).to("cuda")
|
51 |
+
except:
|
52 |
+
model = AutoModelForCausalLM.from_pretrained(
|
53 |
+
"microsoft/OmniParser/icon_caption_florence",
|
54 |
+
torch_dtype=torch.float16,
|
55 |
+
trust_remote_code=True,
|
56 |
+
)
|
57 |
+
caption_model_processor = {"processor": processor, "model": model}
|
58 |
+
print("finish loading model!!!")
|
59 |
+
|
60 |
+
app = FastAPI()
|
61 |
+
|
62 |
+
|
63 |
+
class ProcessResponse(BaseModel):
|
64 |
+
image: str # Base64 encoded image
|
65 |
+
parsed_content_list: str
|
66 |
+
label_coordinates: str
|
67 |
+
|
68 |
+
|
69 |
+
def process(
|
70 |
+
image_input: Image.Image, box_threshold: float, iou_threshold: float
|
71 |
+
) -> ProcessResponse:
|
72 |
+
image_save_path = "imgs/saved_image_demo.png"
|
73 |
+
image_input.save(image_save_path)
|
74 |
+
image = Image.open(image_save_path)
|
75 |
+
box_overlay_ratio = image.size[0] / 3200
|
76 |
+
draw_bbox_config = {
|
77 |
+
"text_scale": 0.8 * box_overlay_ratio,
|
78 |
+
"text_thickness": max(int(2 * box_overlay_ratio), 1),
|
79 |
+
"text_padding": max(int(3 * box_overlay_ratio), 1),
|
80 |
+
"thickness": max(int(3 * box_overlay_ratio), 1),
|
81 |
+
}
|
82 |
+
|
83 |
+
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
84 |
+
image_save_path,
|
85 |
+
display_img=False,
|
86 |
+
output_bb_format="xyxy",
|
87 |
+
goal_filtering=None,
|
88 |
+
easyocr_args={"paragraph": False, "text_threshold": 0.9},
|
89 |
+
use_paddleocr=True,
|
90 |
+
)
|
91 |
+
text, ocr_bbox = ocr_bbox_rslt
|
92 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
93 |
+
image_save_path,
|
94 |
+
yolo_model,
|
95 |
+
BOX_TRESHOLD=box_threshold,
|
96 |
+
output_coord_in_ratio=True,
|
97 |
+
ocr_bbox=ocr_bbox,
|
98 |
+
draw_bbox_config=draw_bbox_config,
|
99 |
+
caption_model_processor=caption_model_processor,
|
100 |
+
ocr_text=text,
|
101 |
+
iou_threshold=iou_threshold,
|
102 |
+
)
|
103 |
+
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
104 |
+
print("finish processing")
|
105 |
+
parsed_content_list_str = "\n".join(parsed_content_list)
|
106 |
+
|
107 |
+
# Encode image to base64
|
108 |
+
buffered = io.BytesIO()
|
109 |
+
image.save(buffered, format="PNG")
|
110 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
111 |
+
|
112 |
+
return ProcessResponse(
|
113 |
+
image=img_str,
|
114 |
+
parsed_content_list=str(parsed_content_list_str),
|
115 |
+
label_coordinates=str(label_coordinates),
|
116 |
+
)
|
117 |
+
|
118 |
+
|
119 |
+
@app.post("/process_image", response_model=ProcessResponse)
|
120 |
+
async def process_image(
|
121 |
+
image_file: UploadFile = File(...),
|
122 |
+
box_threshold: float = 0.05,
|
123 |
+
iou_threshold: float = 0.1,
|
124 |
+
):
|
125 |
+
try:
|
126 |
+
contents = await image_file.read()
|
127 |
+
image_input = Image.open(io.BytesIO(contents)).convert("RGB")
|
128 |
+
except Exception as e:
|
129 |
+
raise HTTPException(status_code=400, detail="Invalid image file")
|
130 |
+
|
131 |
+
response = process(image_input, box_threshold, iou_threshold)
|
132 |
+
return response
|