Spaces:
Running
Running
File size: 12,140 Bytes
36239b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
import time
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddleseg
from paddleseg.models import layers
from paddleseg import utils
from paddleseg.cvlibs import manager
from ppmatting.models.losses import MRSD, GradientLoss
from ppmatting.models.backbone import resnet_vd
@manager.MODELS.add_component
class PPMatting(nn.Layer):
"""
The PPMattinh implementation based on PaddlePaddle.
The original article refers to
Guowei Chen, et, al. "PP-Matting: High-Accuracy Natural Image Matting"
(https://arxiv.org/pdf/2204.09433.pdf).
Args:
backbone: backbone model.
pretrained(str, optional): The path of pretrianed model. Defautl: None.
"""
def __init__(self, backbone, pretrained=None):
super().__init__()
self.backbone = backbone
self.pretrained = pretrained
self.loss_func_dict = self.get_loss_func_dict()
self.backbone_channels = backbone.feat_channels
self.scb = SCB(self.backbone_channels[-1])
self.hrdb = HRDB(
self.backbone_channels[0] + self.backbone_channels[1],
scb_channels=self.scb.out_channels,
gf_index=[0, 2, 4])
self.init_weight()
def forward(self, inputs):
x = inputs['img']
input_shape = paddle.shape(x)
fea_list = self.backbone(x)
scb_logits = self.scb(fea_list[-1])
semantic_map = F.softmax(scb_logits[-1], axis=1)
fea0 = F.interpolate(
fea_list[0], input_shape[2:], mode='bilinear', align_corners=False)
fea1 = F.interpolate(
fea_list[1], input_shape[2:], mode='bilinear', align_corners=False)
hrdb_input = paddle.concat([fea0, fea1], 1)
hrdb_logit = self.hrdb(hrdb_input, scb_logits)
detail_map = F.sigmoid(hrdb_logit)
fusion = self.fusion(semantic_map, detail_map)
if self.training:
logit_dict = {
'semantic': semantic_map,
'detail': detail_map,
'fusion': fusion
}
loss_dict = self.loss(logit_dict, inputs)
return logit_dict, loss_dict
else:
return fusion
def get_loss_func_dict(self):
loss_func_dict = defaultdict(list)
loss_func_dict['semantic'].append(nn.NLLLoss())
loss_func_dict['detail'].append(MRSD())
loss_func_dict['detail'].append(GradientLoss())
loss_func_dict['fusion'].append(MRSD())
loss_func_dict['fusion'].append(MRSD())
loss_func_dict['fusion'].append(GradientLoss())
return loss_func_dict
def loss(self, logit_dict, label_dict):
loss = {}
# semantic loss computation
# get semantic label
semantic_label = label_dict['trimap']
semantic_label_trans = (semantic_label == 128).astype('int64')
semantic_label_bg = (semantic_label == 0).astype('int64')
semantic_label = semantic_label_trans + semantic_label_bg * 2
loss_semantic = self.loss_func_dict['semantic'][0](
paddle.log(logit_dict['semantic'] + 1e-6),
semantic_label.squeeze(1))
loss['semantic'] = loss_semantic
# detail loss computation
transparent = label_dict['trimap'] == 128
detail_alpha_loss = self.loss_func_dict['detail'][0](
logit_dict['detail'], label_dict['alpha'], transparent)
# gradient loss
detail_gradient_loss = self.loss_func_dict['detail'][1](
logit_dict['detail'], label_dict['alpha'], transparent)
loss_detail = detail_alpha_loss + detail_gradient_loss
loss['detail'] = loss_detail
loss['detail_alpha'] = detail_alpha_loss
loss['detail_gradient'] = detail_gradient_loss
# fusion loss
loss_fusion_func = self.loss_func_dict['fusion']
# fusion_sigmoid loss
fusion_alpha_loss = loss_fusion_func[0](logit_dict['fusion'],
label_dict['alpha'])
# composion loss
comp_pred = logit_dict['fusion'] * label_dict['fg'] + (
1 - logit_dict['fusion']) * label_dict['bg']
comp_gt = label_dict['alpha'] * label_dict['fg'] + (
1 - label_dict['alpha']) * label_dict['bg']
fusion_composition_loss = loss_fusion_func[1](comp_pred, comp_gt)
# grandient loss
fusion_grad_loss = loss_fusion_func[2](logit_dict['fusion'],
label_dict['alpha'])
# fusion loss
loss_fusion = fusion_alpha_loss + fusion_composition_loss + fusion_grad_loss
loss['fusion'] = loss_fusion
loss['fusion_alpha'] = fusion_alpha_loss
loss['fusion_composition'] = fusion_composition_loss
loss['fusion_gradient'] = fusion_grad_loss
loss[
'all'] = 0.25 * loss_semantic + 0.25 * loss_detail + 0.25 * loss_fusion
return loss
def fusion(self, semantic_map, detail_map):
# semantic_map [N, 3, H, W]
# In index, 0 is foreground, 1 is transition, 2 is backbone
# After fusion, the foreground is 1, the background is 0, and the transion is between [0, 1]
index = paddle.argmax(semantic_map, axis=1, keepdim=True)
transition_mask = (index == 1).astype('float32')
fg = (index == 0).astype('float32')
alpha = detail_map * transition_mask + fg
return alpha
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class SCB(nn.Layer):
def __init__(self, in_channels):
super().__init__()
self.in_channels = [512 + in_channels, 512, 256, 128, 128, 64]
self.mid_channels = [512, 256, 128, 128, 64, 64]
self.out_channels = [256, 128, 64, 64, 64, 3]
self.psp_module = layers.PPModule(
in_channels,
512,
bin_sizes=(1, 3, 5),
dim_reduction=False,
align_corners=False)
psp_upsamples = [2, 4, 8, 16]
self.psps = nn.LayerList([
self.conv_up_psp(512, self.out_channels[i], psp_upsamples[i])
for i in range(4)
])
scb_list = [
self._make_stage(
self.in_channels[i],
self.mid_channels[i],
self.out_channels[i],
padding=int(i == 0) + 1,
dilation=int(i == 0) + 1)
for i in range(len(self.in_channels) - 1)
]
scb_list += [
nn.Sequential(
layers.ConvBNReLU(
self.in_channels[-1], self.mid_channels[-1], 3, padding=1),
layers.ConvBNReLU(
self.mid_channels[-1], self.mid_channels[-1], 3, padding=1),
nn.Conv2D(
self.mid_channels[-1], self.out_channels[-1], 3, padding=1))
]
self.scb_stages = nn.LayerList(scb_list)
def forward(self, x):
psp_x = self.psp_module(x)
psps = [psp(psp_x) for psp in self.psps]
scb_logits = []
for i, scb_stage in enumerate(self.scb_stages):
if i == 0:
x = scb_stage(paddle.concat((psp_x, x), 1))
elif i <= len(psps):
x = scb_stage(paddle.concat((psps[i - 1], x), 1))
else:
x = scb_stage(x)
scb_logits.append(x)
return scb_logits
def conv_up_psp(self, in_channels, out_channels, up_sample):
return nn.Sequential(
layers.ConvBNReLU(
in_channels, out_channels, 3, padding=1),
nn.Upsample(
scale_factor=up_sample, mode='bilinear', align_corners=False))
def _make_stage(self,
in_channels,
mid_channels,
out_channels,
padding=1,
dilation=1):
layer_list = [
layers.ConvBNReLU(
in_channels, mid_channels, 3, padding=1), layers.ConvBNReLU(
mid_channels,
mid_channels,
3,
padding=padding,
dilation=dilation), layers.ConvBNReLU(
mid_channels,
out_channels,
3,
padding=padding,
dilation=dilation), nn.Upsample(
scale_factor=2,
mode='bilinear',
align_corners=False)
]
return nn.Sequential(*layer_list)
class HRDB(nn.Layer):
"""
The High-Resolution Detail Branch
Args:
in_channels(int): The number of input channels.
scb_channels(list|tuple): The channels of scb logits
gf_index(list|tuple, optional): Which logit is selected as guidance flow from scb logits. Default: (0, 2, 4)
"""
def __init__(self, in_channels, scb_channels, gf_index=(0, 2, 4)):
super().__init__()
self.gf_index = gf_index
self.gf_list = nn.LayerList(
[nn.Conv2D(scb_channels[i], 1, 1) for i in gf_index])
channels = [64, 32, 16, 8]
self.res_list = [
resnet_vd.BasicBlock(
in_channels, channels[0], stride=1, shortcut=False)
]
self.res_list += [
resnet_vd.BasicBlock(
i, i, stride=1) for i in channels[1:-1]
]
self.res_list = nn.LayerList(self.res_list)
self.convs = nn.LayerList([
nn.Conv2D(
channels[i], channels[i + 1], kernel_size=1)
for i in range(len(channels) - 1)
])
self.gates = nn.LayerList(
[GatedSpatailConv2d(i, i) for i in channels[1:]])
self.detail_conv = nn.Conv2D(channels[-1], 1, 1, bias_attr=False)
def forward(self, x, scb_logits):
for i in range(len(self.res_list)):
x = self.res_list[i](x)
x = self.convs[i](x)
gf = self.gf_list[i](scb_logits[self.gf_index[i]])
gf = F.interpolate(
gf, paddle.shape(x)[-2:], mode='bilinear', align_corners=False)
x = self.gates[i](x, gf)
return self.detail_conv(x)
class GatedSpatailConv2d(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
groups=1,
bias_attr=False):
super().__init__()
self._gate_conv = nn.Sequential(
layers.SyncBatchNorm(in_channels + 1),
nn.Conv2D(
in_channels + 1, in_channels + 1, kernel_size=1),
nn.ReLU(),
nn.Conv2D(
in_channels + 1, 1, kernel_size=1),
layers.SyncBatchNorm(1),
nn.Sigmoid())
self.conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias_attr=bias_attr)
def forward(self, input_features, gating_features):
cat = paddle.concat([input_features, gating_features], axis=1)
alphas = self._gate_conv(cat)
x = input_features * (alphas + 1)
x = self.conv(x)
return x
|