my-project / app.py
Samyurta's picture
Update app.py
2aadeeb
import streamlit as st
import fitz
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
from langchain.llms import CTransformers
from langchain.chains import RetrievalQA
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
def get_pdf_text(pdf_docs):
text = ""
pdf_document = fitz.open(pdf_path)
for page_number in range(pdf_document.page_count):
page = pdf_document[page_number]
text += page.get_text()
pdf_document.close()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=200,
chunk_overlap=0,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
# Use Sentence Transformer for embeddings
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm = CTransformers(
model='llama-2-7b-chat.ggmlv3.q8_0.bin',
model_type='llama',
config={'max_new_tokens': 200, 'temperature': 0.01},
token='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'
)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
st.set_page_config(page_title="Chat with multiple PDFs",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(
vectorstore)
if __name__ == '__main__':
main()