File size: 1,039 Bytes
69a9bd1
 
5845aec
f8dd39f
69a9bd1
8ed4df7
69a9bd1
 
 
 
 
5845aec
 
b1c4543
 
5845aec
69a9bd1
5845aec
66fd747
69a9bd1
16cbef9
b08ff31
69a9bd1
 
f8dd39f
 
 
 
69a9bd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from transformers import pipeline
import gradio as gr
from song_guesser import SongGuesser
from list_songs import ListSongs

pipe = pipeline(model="SamuelHarner/whisper-tuned")  # change to "your-username/the-name-you-picked"

def transcribe(audio):
    text = pipe(audio)["text"]
    return text

def get_song_guess(audio):
    user_query = transcribe(audio)
    output = "Vad vi hörde från dig: " + user_query + "\n\nVi tror att du sjöng: " + SongGuesser.guess_song(user_query)
    return output

iface = gr.Interface(
    fn=get_song_guess, 
    inputs=gr.Audio(sources=["microphone"], type="filepath"),
    outputs="text",
    title="Sjung en sång och låt oss gissa  🎤 🎄",
    description="Sing a Swedish Christmas song and see if we can guess it. If our guess is wrong, try singing more clearly, more of the lyrics, or another song and maybe we will get it the next time!",
)

markdown_text = "The songs that we can guess are: \n" + ListSongs.get_song_list()

iface.add_component(gr.Markdown(markdown_text))

iface.launch()