|
|
|
from istftnet import AdaIN1d, Decoder
|
|
from munch import Munch
|
|
from pathlib import Path
|
|
from plbert import load_plbert
|
|
from torch.nn.utils import weight_norm, spectral_norm
|
|
import json
|
|
import numpy as np
|
|
import os
|
|
import os.path as osp
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
class LinearNorm(torch.nn.Module):
|
|
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
|
super(LinearNorm, self).__init__()
|
|
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
|
|
|
torch.nn.init.xavier_uniform_(
|
|
self.linear_layer.weight,
|
|
gain=torch.nn.init.calculate_gain(w_init_gain))
|
|
|
|
def forward(self, x):
|
|
return self.linear_layer(x)
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, channels, eps=1e-5):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.eps = eps
|
|
|
|
self.gamma = nn.Parameter(torch.ones(channels))
|
|
self.beta = nn.Parameter(torch.zeros(channels))
|
|
|
|
def forward(self, x):
|
|
x = x.transpose(1, -1)
|
|
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
|
return x.transpose(1, -1)
|
|
|
|
class TextEncoder(nn.Module):
|
|
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
|
super().__init__()
|
|
self.embedding = nn.Embedding(n_symbols, channels)
|
|
|
|
padding = (kernel_size - 1) // 2
|
|
self.cnn = nn.ModuleList()
|
|
for _ in range(depth):
|
|
self.cnn.append(nn.Sequential(
|
|
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
|
LayerNorm(channels),
|
|
actv,
|
|
nn.Dropout(0.2),
|
|
))
|
|
|
|
|
|
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
|
|
|
def forward(self, x, input_lengths, m):
|
|
x = self.embedding(x)
|
|
x = x.transpose(1, 2)
|
|
m = m.to(input_lengths.device).unsqueeze(1)
|
|
x.masked_fill_(m, 0.0)
|
|
|
|
for c in self.cnn:
|
|
x = c(x)
|
|
x.masked_fill_(m, 0.0)
|
|
|
|
x = x.transpose(1, 2)
|
|
|
|
input_lengths = input_lengths.cpu().numpy()
|
|
x = nn.utils.rnn.pack_padded_sequence(
|
|
x, input_lengths, batch_first=True, enforce_sorted=False)
|
|
|
|
self.lstm.flatten_parameters()
|
|
x, _ = self.lstm(x)
|
|
x, _ = nn.utils.rnn.pad_packed_sequence(
|
|
x, batch_first=True)
|
|
|
|
x = x.transpose(-1, -2)
|
|
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
|
|
|
x_pad[:, :, :x.shape[-1]] = x
|
|
x = x_pad.to(x.device)
|
|
|
|
x.masked_fill_(m, 0.0)
|
|
|
|
return x
|
|
|
|
def inference(self, x):
|
|
x = self.embedding(x)
|
|
x = x.transpose(1, 2)
|
|
x = self.cnn(x)
|
|
x = x.transpose(1, 2)
|
|
self.lstm.flatten_parameters()
|
|
x, _ = self.lstm(x)
|
|
return x
|
|
|
|
def length_to_mask(self, lengths):
|
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
|
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
|
return mask
|
|
|
|
|
|
class UpSample1d(nn.Module):
|
|
def __init__(self, layer_type):
|
|
super().__init__()
|
|
self.layer_type = layer_type
|
|
|
|
def forward(self, x):
|
|
if self.layer_type == 'none':
|
|
return x
|
|
else:
|
|
return F.interpolate(x, scale_factor=2, mode='nearest')
|
|
|
|
class AdainResBlk1d(nn.Module):
|
|
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
|
upsample='none', dropout_p=0.0):
|
|
super().__init__()
|
|
self.actv = actv
|
|
self.upsample_type = upsample
|
|
self.upsample = UpSample1d(upsample)
|
|
self.learned_sc = dim_in != dim_out
|
|
self._build_weights(dim_in, dim_out, style_dim)
|
|
self.dropout = nn.Dropout(dropout_p)
|
|
|
|
if upsample == 'none':
|
|
self.pool = nn.Identity()
|
|
else:
|
|
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
|
|
|
|
|
def _build_weights(self, dim_in, dim_out, style_dim):
|
|
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
|
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
|
self.norm1 = AdaIN1d(style_dim, dim_in)
|
|
self.norm2 = AdaIN1d(style_dim, dim_out)
|
|
if self.learned_sc:
|
|
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
|
|
|
def _shortcut(self, x):
|
|
x = self.upsample(x)
|
|
if self.learned_sc:
|
|
x = self.conv1x1(x)
|
|
return x
|
|
|
|
def _residual(self, x, s):
|
|
x = self.norm1(x, s)
|
|
x = self.actv(x)
|
|
x = self.pool(x)
|
|
x = self.conv1(self.dropout(x))
|
|
x = self.norm2(x, s)
|
|
x = self.actv(x)
|
|
x = self.conv2(self.dropout(x))
|
|
return x
|
|
|
|
def forward(self, x, s):
|
|
out = self._residual(x, s)
|
|
out = (out + self._shortcut(x)) / np.sqrt(2)
|
|
return out
|
|
|
|
class AdaLayerNorm(nn.Module):
|
|
def __init__(self, style_dim, channels, eps=1e-5):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.eps = eps
|
|
|
|
self.fc = nn.Linear(style_dim, channels*2)
|
|
|
|
def forward(self, x, s):
|
|
x = x.transpose(-1, -2)
|
|
x = x.transpose(1, -1)
|
|
|
|
h = self.fc(s)
|
|
h = h.view(h.size(0), h.size(1), 1)
|
|
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
|
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
|
|
|
|
|
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
|
x = (1 + gamma) * x + beta
|
|
return x.transpose(1, -1).transpose(-1, -2)
|
|
|
|
class ProsodyPredictor(nn.Module):
|
|
|
|
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
|
super().__init__()
|
|
|
|
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
|
d_model=d_hid,
|
|
nlayers=nlayers,
|
|
dropout=dropout)
|
|
|
|
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
|
self.duration_proj = LinearNorm(d_hid, max_dur)
|
|
|
|
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
|
self.F0 = nn.ModuleList()
|
|
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
|
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
|
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
|
|
|
self.N = nn.ModuleList()
|
|
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
|
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
|
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
|
|
|
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
|
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
|
|
|
|
|
def forward(self, texts, style, text_lengths, alignment, m):
|
|
d = self.text_encoder(texts, style, text_lengths, m)
|
|
|
|
batch_size = d.shape[0]
|
|
text_size = d.shape[1]
|
|
|
|
|
|
input_lengths = text_lengths.cpu().numpy()
|
|
x = nn.utils.rnn.pack_padded_sequence(
|
|
d, input_lengths, batch_first=True, enforce_sorted=False)
|
|
|
|
m = m.to(text_lengths.device).unsqueeze(1)
|
|
|
|
self.lstm.flatten_parameters()
|
|
x, _ = self.lstm(x)
|
|
x, _ = nn.utils.rnn.pad_packed_sequence(
|
|
x, batch_first=True)
|
|
|
|
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
|
|
|
|
x_pad[:, :x.shape[1], :] = x
|
|
x = x_pad.to(x.device)
|
|
|
|
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
|
|
|
|
en = (d.transpose(-1, -2) @ alignment)
|
|
|
|
return duration.squeeze(-1), en
|
|
|
|
def F0Ntrain(self, x, s):
|
|
x, _ = self.shared(x.transpose(-1, -2))
|
|
|
|
F0 = x.transpose(-1, -2)
|
|
for block in self.F0:
|
|
F0 = block(F0, s)
|
|
F0 = self.F0_proj(F0)
|
|
|
|
N = x.transpose(-1, -2)
|
|
for block in self.N:
|
|
N = block(N, s)
|
|
N = self.N_proj(N)
|
|
|
|
return F0.squeeze(1), N.squeeze(1)
|
|
|
|
def length_to_mask(self, lengths):
|
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
|
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
|
return mask
|
|
|
|
class DurationEncoder(nn.Module):
|
|
|
|
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
|
super().__init__()
|
|
self.lstms = nn.ModuleList()
|
|
for _ in range(nlayers):
|
|
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
|
d_model // 2,
|
|
num_layers=1,
|
|
batch_first=True,
|
|
bidirectional=True,
|
|
dropout=dropout))
|
|
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
|
|
|
|
|
self.dropout = dropout
|
|
self.d_model = d_model
|
|
self.sty_dim = sty_dim
|
|
|
|
def forward(self, x, style, text_lengths, m):
|
|
masks = m.to(text_lengths.device)
|
|
|
|
x = x.permute(2, 0, 1)
|
|
s = style.expand(x.shape[0], x.shape[1], -1)
|
|
x = torch.cat([x, s], axis=-1)
|
|
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
|
|
|
x = x.transpose(0, 1)
|
|
input_lengths = text_lengths.cpu().numpy()
|
|
x = x.transpose(-1, -2)
|
|
|
|
for block in self.lstms:
|
|
if isinstance(block, AdaLayerNorm):
|
|
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
|
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
|
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
|
else:
|
|
x = x.transpose(-1, -2)
|
|
x = nn.utils.rnn.pack_padded_sequence(
|
|
x, input_lengths, batch_first=True, enforce_sorted=False)
|
|
block.flatten_parameters()
|
|
x, _ = block(x)
|
|
x, _ = nn.utils.rnn.pad_packed_sequence(
|
|
x, batch_first=True)
|
|
x = F.dropout(x, p=self.dropout, training=self.training)
|
|
x = x.transpose(-1, -2)
|
|
|
|
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
|
|
|
x_pad[:, :, :x.shape[-1]] = x
|
|
x = x_pad.to(x.device)
|
|
|
|
return x.transpose(-1, -2)
|
|
|
|
def inference(self, x, style):
|
|
x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
|
|
style = style.expand(x.shape[0], x.shape[1], -1)
|
|
x = torch.cat([x, style], axis=-1)
|
|
src = self.pos_encoder(x)
|
|
output = self.transformer_encoder(src).transpose(0, 1)
|
|
return output
|
|
|
|
def length_to_mask(self, lengths):
|
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
|
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
|
return mask
|
|
|
|
|
|
def recursive_munch(d):
|
|
if isinstance(d, dict):
|
|
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
|
elif isinstance(d, list):
|
|
return [recursive_munch(v) for v in d]
|
|
else:
|
|
return d
|
|
|
|
def build_model(path, device):
|
|
config = Path(__file__).parent / 'config.json'
|
|
assert config.exists(), f'Config path incorrect: config.json not found at {config}'
|
|
with open(config, 'r') as r:
|
|
args = recursive_munch(json.load(r))
|
|
assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
|
|
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
|
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
|
upsample_rates = args.decoder.upsample_rates,
|
|
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
|
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
|
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
|
|
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
|
|
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
|
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
|
bert = load_plbert()
|
|
bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
|
|
for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
|
|
for child in parent.children():
|
|
if isinstance(child, nn.RNNBase):
|
|
child.flatten_parameters()
|
|
model = Munch(
|
|
bert=bert.to(device).eval(),
|
|
bert_encoder=bert_encoder.to(device).eval(),
|
|
predictor=predictor.to(device).eval(),
|
|
decoder=decoder.to(device).eval(),
|
|
text_encoder=text_encoder.to(device).eval(),
|
|
)
|
|
for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
|
|
assert key in model, key
|
|
try:
|
|
model[key].load_state_dict(state_dict)
|
|
except:
|
|
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
|
model[key].load_state_dict(state_dict, strict=False)
|
|
return model
|
|
|